std::experimental::simd<T,Abi>::simd
From cppreference.com
< cpp | experimental | simd | simd
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Experimental
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
Extensions for parallelism v2
Parallel exceptions
Additional execution policies
Algorithms
Task blocks
std::experimental::simd
Member functions
Non-member functions
simd() noexcept = default;
(1)
(parallelism TS v2)
template< class U >
simd( U&& value ) noexcept;
(2)
(parallelism TS v2)
simd( U&& value ) noexcept;
template< class U >
simd( const simd<U, simd_abi::fixed_size<size()>>& other ) noexcept;
(3)
(parallelism TS v2)
simd( const simd<U, simd_abi::fixed_size<size()>>& other ) noexcept;
template< class G >
explicit simd( G&& generator ) noexcept;
(4)
(parallelism TS v2)
explicit simd( G&& generator ) noexcept;
template< class U, class Flags >
simd( const U* mem, Flags flags );
(5)
(parallelism TS v2)
simd( const U* mem, Flags flags );
simd( const simd& other ) noexcept = default;
(6)
(parallelism TS v2) (implicitly declared)
simd( simd&& other ) noexcept = default;
(7)
(parallelism TS v2) (implicitly declared)
1) Constructs a
simd
using default initialization (constructed without initializer) or value initialization (constructed with an empty initializer).2) The broadcast constructor constructs a
simd
with all values initialized to value. This overload participates in overload resolution only if the conversion from U
to T
is value-preserving, or U
is either int or unsigned int if T
is an unsigned integral type.3) Constructs a
simd
where the i-th element is initialized to static_cast<T>(other[i]) for all i in the range of [
0,
size()
)
. This overload participates in overload resolution only if Abi
is simd_abi::fixed_size<size()> and the conversion from U
to T
is value-preserving, and, if both U
and T
are integral, the integer conversion rank of T
is greater than the integer conversion rank of U
.4) The generator constructor constructs a
simd
where the i-th element is initialized to generator(std::integral_constant <std::size_t, i>()). This overload participates in overload resolution only if simd(gen(std::integral_constant<std::size_t, i>()))
is well-formed for all i in the range of [
0,
size()
)
. The calls to generator are unsequenced with respect to each other. Vectorization-unsafe standard library functions may not be invoked by generator.5) The load constructor constructs a
simd
where the i-th element is initialized to static_cast<T>(mem[i]) for all i in the range of [
0,
size()
)
.6,7) Implicitly declared copy and move constructors. Constructs a
simd
where each element is initialized from the values of the elements in other.[edit] Parameters
value
-
the value used for initialization of all
simd
elements
other
-
another
simd
to copy from
generator
-
a function object used for initialization of each
simd
element
mem
-
a pointer into an array where
[
mem,
mem + size())
is a valid range
flags
-
if of type vector_aligned_tag, the load constructor may assume mem to point to storage aligned by memory_alignment_v<simd, U>
Type requirements
-The conversion from
U
to T
must be value-preserving. The broadcast constructor (2) additionally allows U
to be int or to be unsigned int if T
is an unsigned integral type.
-
is_simd_flag_type_v<Flags>
must be true.
[edit] Example
Run this code
#include <cstddef> #include <experimental/simd> #include <iostream> namespace stdx = std::experimental; int main() { stdx::native_simd<int> a; // uninitialized a = 1; // all elements set to 1 stdx::native_simd<int> b([](int i) { return i; }); // {0, 1, 2, 3, ...} alignas(stdx::memory_alignment_v<stdx::native_simd<int>>) std::array <int, stdx::native_simd<int>::size() * 2> mem = {}; for (std::size_t i = 0; i < mem.size(); ++i) mem[i] = i & 1; stdx::native_simd<int> c(&mem[0], stdx::vector_aligned); // {0, 1, 0, 1, ...} stdx::native_simd<int> d(&mem[1], stdx::element_aligned); // {1, 0, 1, 0, ...} auto sum = a + b + c + d; for (std::size_t i = 0; i < sum.size(); ++i) std::cout << sum[i] << ' '; std::cout << '\n'; }
Possible output:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17