Notebooks

Random Feature Methods in Machine Learning

Last update: 25 Aug 2025 11:40
First version: 13 May 2021

(and other parts of statistics and/or computational mathematics...)

    To read:
  • David Bosch, Ashkan Panahi, Ayca Ozcelikkale, Devdatt Dubhashi, "Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves", pp. 11371--11414 in Proceedings of The 26th International Conference on Artificial Intelligence and Statistics (2023)
  • Krzysztof Choromanski, "Taming graph kernels with random features", arxiv:2305.00156
  • Hengyu Fu, Tianyu Guo, Yu Bai, Song Mei, "What can a Single Attention Layer Learn? A Study Through the Random Features Lens", arxiv:2307.11353
  • Abolfazl Hashemi, Hayden Schaeffer, Robert Shi, Ufuk Topcu, Giang Tran, Rachel Ward, "Generalization Bounds for Sparse Random Feature Expansions", arxiv:2103.03191
  • Samuel Lanthaler, Nicholas H. Nelsen, "Error Bounds for Learning with Vector-Valued Random Features", arxiv:2305.17170
  • Song Mei, Theodor Misiakiewicz, Andrea Montanari, "Learning with invariances in random features and kernel models", arxiv:2102.13219
  • Mateus P. Otto, Rafael Izbicki, "RFFNet: Scalable and interpretable kernel methods via Random Fourier Features", arxiv:2211.06410
  • Isaac Reid, Krzysztof Choromanski, Adrian Weller, "Quasi-Monte Carlo Graph Random Features", arxiv:2305.12470
  • Bharath Sriperumbudur, Nicholas Sterge, "Approximate Kernel PCA Using Random Features: Computational vs. Statistical Trade-off", arxiv:1706.06296
  • Zitong Yang, Yu Bai, Song Mei, "Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models", arxiv:2103.04554
  • Michael Minyi Zhang, Gregory W. Gundersen, Barbara E. Engelhardt, "Bayesian Non-linear Latent Variable Modeling via Random Fourier Features", arxiv:2306.08352


permanent link for this note RSS feed for this note

Notebooks : Powered by Blosxom

AltStyle によって変換されたページ (->オリジナル) /