参考資料1 生命表諸関数の定義
死亡率
nqx
:
ちょうどnqx歳に達した者がx+n歳に達しないで死亡する確率を、年齢階級[x ,x+n)における死亡率という。特にnqxをnqx歳の死亡率といい、qxで表す。
生存数
x
:
生命表上で一定の出生者が、上記の死亡率に従って死亡減少していくと考えた場合、nqx歳に達するまで生きると期待される者の数をnqx歳における生存数といい、これをlxで表す。
死亡数
ndx
:
nqx歳における生存数 lx人のうち、x+n歳に達しないで死亡すると期待される者の数を年齢階級[x , x+n)における死亡数という。特に1lxをnqx歳における死亡数といい、これを1lxで表す。
定常人口
nlx及びtx
:
nqx歳における生存数lx人について、これらの各々がnqx歳からx+n歳に達するまでの間に生存する年数の和、又は、常に一定の出生があって、これらの者が上記の死亡率に従って死亡すると仮定すると究極において一定の人口集団が得られるが、その集団のnqx歳以上x+n歳未満の人口を、年齢階級[x , x+n)における定常人口という。特に1lxをnqx歳における定常人口といい、これをlxで表す。更に、nqx歳における生存数lx人について、これらの各々がnqx歳以後死亡に至るまでの間に生存する年数の和、又は上記の人口集団のnqx歳以上の人口を、nqx歳以上の定常人口総数といい、これをtxで表す。nlx、txは
nlx-eq,tx-eq
により与えられる。
平均余命
ex
:
nqx歳における生存数lx人について、これらの者がnqx歳以降に生存する年数の平均をnqx歳における平均余命といい、これをexで表す。
nqx歳の平均余命は
ex=tx/lx
により与えられる。また、0歳における平均余命exを平均寿命という。
寿命中位数
:
生命表上で、出生者のうちちょうど半数が生存し、半数が死亡すると期待される年数を寿命中位数という。これは
lα
を満たすαとして与えられる。