Abstract:
There is a growing need for entirely new paradigms of computing that "can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy-efficiency of the human brain." In alignment with this goal, large-scale integration of CMOS mixed-signal integrated circuits and nanoscale emerging devices, such as the phase-change (PCRAM) and resistive RAM (RRAM), etc., can enable a new generation of Neuromorphic computers that can be applied to a wide range of machine learning problems. This tutorial combines an overview of recent advances in energy-efficient Neuromorphic Computing Circuits and Systems for embedded deep learning applications. The tutorial aims to provide a complete picture to the audience; from emerging devices, to transistor-level neural circuit design, and learning algorithms to put the system together. Case studies will be presented for Neuromorphic System-on-a-chip (NeuSoC) with applications to spike-based machine learning followed by recent advances in the area spiking neural networks and neuromorphic hardware.