このウェブサイトではJavaScriptおよびスタイルシートを使用しております。正常に表示させるためにはJavaScriptを有効にしてください。ご覧いただいているのは国立国会図書館が保存した過去のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。
Slow Positron Facility
When a positron and an electron annihilate each other in condensed matter (a solid or a liquid), they always give rise to two gamma ray photons. The conversion of the particles' mass into energy exactly follows Einstein's equation E = mc^2, in which E is the energy liberated, m is the mass of the particles and c is the speed of light; mass and energy are thus conserved. The sum of the positron's positive charged (+1) and the electron's negative charge (-1) is zero. The gamma ray photons that result from the annihilation carry no charge; charge is thus conserved. In the annihilation events that are of interest here the spins of the particles are antiparallel and add up to zero. The gamma ray photons have no spin; spin is thus conserved. The two photons each have an energy of .511 million electron volts (MeV), and they leave the site of the annihilation in exactly opposite directions. Their net momentum is zero; momentum is thus conserved. The annihilation process therefore conserves energy, charge, spin and momentum. All the same, electrons could annihilate the protons in the nuclei of atoms without violating these laws, and if they did so, there would be no atoms. Protons, however, are 2,000 times as massive as electrons. Electrons can be annihilated only by antielectrons, that is, positrons. The fact that our world exists therefore proves yet another universal law, a law that might be called the conservation of light and heavy particles. In short, the positron-electron system exemplifies the most basic conservation laws found in nature. (Prof. Werner Brandt)