このウェブサイトではJavaScriptおよびスタイルシートを使用しております。正常に表示させるためにはJavaScriptを有効にしてください。ご覧いただいているのは国立国会図書館が保存した過去のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。

ご覧いただいているのは国立国会図書館が保存した2021年8月7日時点のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。収集時のURLは http(s)://www.ism.ac.jp/events/2019/meeting0716.html ですが、このURLは既に存在しない場合や異なるサイトになっている場合があります。

(注記)このページの著作権について

ヘルプ


保存日:

ヘルプ


保存日:

ご覧いただいているのは国立国会図書館が保存した2021年8月7日時点のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。収集時のURLは http(s)://www.ism.ac.jp/events/2019/meeting0716.html ですが、このURLは既に存在しない場合や異なるサイトになっている場合があります。

(注記)このページの著作権について

第46回統計的機械学習セミナー / The 46th Statistical Machine Learning Seminar

Date&Time
2019年7月16日(火)15:00〜16:00
/ July 16, 2019 (Tue) 15:00 - 16:00

Admission Free, No Booking Necessary

Place
統計数理研究所 セミナー室5 (D313・D314)
/ Seminar room5 (D313,D314) @ The Institute of Statistical Mathematics
区切り線
Speaker
Dr. Motonobu Kanagawa
(University of Tuebingen)
*The talk will be given in English
Title
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Abstract
Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integration that empirically compares favorably with Monte Carlo integration on problems of medium dimensionality (where non-adaptive quadrature is not competitive). Its key ingredient is an acquisition function that changes as a function of previously collected values of the integrand. While this adaptivity appears to be empirically powerful, it complicates analysis. Consequently, there are no theoretical guarantees so far for this class of methods. In this work, for a broad class of adaptive Bayesian quadrature methods, we prove consistency, deriving non-tight but informative convergence rates. To do so we introduce a new concept we call weak adaptivity. In guaranteeing consistency of ABQ, weak adaptivity is notionally similar to the ideas of detailed balance and ergodicity in Markov Chain Monte Carlo methods, which allow sufficient conditions for consistency of MCMC. Likewise, our results identify a large and flexible class of adaptive Bayesian quadrature rules as consistent, within which practitioners can develop empirically efficient methods.(Joint work with Philipp Hennig; preprint available at https://arxiv.org/abs/1905.10271).

AltStyle によって変換されたページ (->オリジナル) /