Control/Applicative.hs
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP #-}
-----------------------------------------------------------------------------
-- |
-- Module : Control.Applicative
-- Copyright : Conor McBride and Ross Paterson 2005
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- This module describes a structure intermediate between a functor and
-- a monad (technically, a strong lax monoidal functor). Compared with
-- monads, this interface lacks the full power of the binding operation
-- '>>=', but
--
-- * it has more instances.
--
-- * it is sufficient for many uses, e.g. context-free parsing, or the
-- 'Data.Traversable.Traversable' class.
--
-- * instances can perform analysis of computations before they are
-- executed, and thus produce shared optimizations.
--
-- This interface was introduced for parsers by Niklas Röjemo, because
-- it admits more sharing than the monadic interface. The names here are
-- mostly based on parsing work by Doaitse Swierstra.
--
-- For more details, see /Applicative Programming with Effects/,
-- by Conor McBride and Ross Paterson, online at
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>.
module Control.Applicative (
-- * Applicative functors
Applicative(..),
-- * Alternatives
Alternative(..),
-- * Instances
Const(..), WrappedMonad(..), WrappedArrow(..), ZipList(..),
-- * Utility functions
(<$>), (<$), (<**>),
liftA, liftA2, liftA3,
optional,
) where
import Prelude hiding (id,(.))
import Control.Category
import Control.Arrow
import Control.Monad (liftM, ap, MonadPlus(..))
#ifndef __NHC__
import Control.Monad.ST.Safe (ST)
import qualified Control.Monad.ST.Lazy.Safe as Lazy (ST)
#endif
import Data.Functor ((<$>), (<$))
import Data.Monoid (Monoid(..))
import Text.ParserCombinators.ReadP
#ifndef __NHC__
(ReadP)
#else
(ReadPN)
#define ReadP (ReadPN b)
#endif
import Text.ParserCombinators.ReadPrec (ReadPrec)
#ifdef __GLASGOW_HASKELL__
import GHC.Conc (STM, retry, orElse)
#endif
infixl 3 <|>
infixl 4 <*>, <*, *>, <**>
-- | A functor with application, providing operations to
--
-- * embed pure expressions ('pure'), and
--
-- * sequence computations and combine their results ('<*>').
--
-- A minimal complete definition must include implementations of these
-- functions satisfying the following laws:
--
-- [/identity/]
-- @'pure' 'id' '<*>' v = v@
--
-- [/composition/]
-- @'pure' (.) '<*>' u '<*>' v '<*>' w = u '<*>' (v '<*>' w)@
--
-- [/homomorphism/]
-- @'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- [/interchange/]
-- @u '<*>' 'pure' y = 'pure' ('$' y) '<*>' u@
--
-- The other methods have the following default definitions, which may
-- be overridden with equivalent specialized implementations:
--
-- @
-- u '*>' v = 'pure' ('const' 'id') '<*>' u '<*>' v
-- u '<*' v = 'pure' 'const' '<*>' u '<*>' v
-- @
--
-- As a consequence of these laws, the 'Functor' instance for @f@ will satisfy
--
-- @
-- 'fmap' f x = 'pure' f '<*>' x
-- @
--
-- If @f@ is also a 'Monad', it should satisfy @'pure' = 'return'@ and
-- @('<*>') = 'ap'@ (which implies that 'pure' and '<*>' satisfy the
-- applicative functor laws).
class Functor f => Applicative f where
-- | Lift a value.
pure :: a -> f a
-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b
-- | Sequence actions, discarding the value of the first argument.
(*>) :: f a -> f b -> f b
(*>) = liftA2 (const id)
-- | Sequence actions, discarding the value of the second argument.
(<*) :: f a -> f b -> f a
(<*) = liftA2 const
-- | A monoid on applicative functors.
--
-- Minimal complete definition: 'empty' and '<|>'.
--
-- If defined, 'some' and 'many' should be the least solutions
-- of the equations:
--
-- * @some v = (:) '<$>' v '<*>' many v@
--
-- * @many v = some v '<|>' 'pure' []@
class Applicative f => Alternative f where
-- | The identity of '<|>'
empty :: f a
-- | An associative binary operation
(<|>) :: f a -> f a -> f a
-- | One or more.
some :: f a -> f [a]
some v = some_v
where
many_v = some_v <|> pure []
some_v = (:) <$> v <*> many_v
-- | Zero or more.
many :: f a -> f [a]
many v = many_v
where
many_v = some_v <|> pure []
some_v = (:) <$> v <*> many_v
-- instances for Prelude types
instance Applicative Maybe where
pure = return
(<*>) = ap
instance Alternative Maybe where
empty = Nothing
Nothing <|> r = r
l <|> _ = l
instance Applicative [] where
pure = return
(<*>) = ap
instance Alternative [] where
empty = []
(<|>) = (++)
instance Applicative IO where
pure = return
(<*>) = ap
#ifndef __NHC__
instance Applicative (ST s) where
pure = return
(<*>) = ap
instance Applicative (Lazy.ST s) where
pure = return
(<*>) = ap
#endif
#ifdef __GLASGOW_HASKELL__
instance Applicative STM where
pure = return
(<*>) = ap
instance Alternative STM where
empty = retry
(<|>) = orElse
#endif
instance Applicative ((->) a) where
pure = const
(<*>) f g x = f x (g x)
instance Monoid a => Applicative ((,) a) where
pure x = (mempty, x)
(u, f) <*> (v, x) = (u `mappend` v, f x)
instance Applicative (Either e) where
pure = Right
Left e <*> _ = Left e
Right f <*> r = fmap f r
instance Applicative ReadP where
pure = return
(<*>) = ap
instance Alternative ReadP where
empty = mzero
(<|>) = mplus
instance Applicative ReadPrec where
pure = return
(<*>) = ap
instance Alternative ReadPrec where
empty = mzero
(<|>) = mplus
instance Arrow a => Applicative (ArrowMonad a) where
pure x = ArrowMonad (arr (const x))
ArrowMonad f <*> ArrowMonad x = ArrowMonad (f &&& x >>> arr (uncurry id))
instance ArrowPlus a => Alternative (ArrowMonad a) where
empty = ArrowMonad zeroArrow
ArrowMonad x <|> ArrowMonad y = ArrowMonad (x <+> y)
-- new instances
newtype Const a b = Const { getConst :: a }
instance Functor (Const m) where
fmap _ (Const v) = Const v
instance Monoid m => Applicative (Const m) where
pure _ = Const mempty
Const f <*> Const v = Const (f `mappend` v)
newtype WrappedMonad m a = WrapMonad { unwrapMonad :: m a }
instance Monad m => Functor (WrappedMonad m) where
fmap f (WrapMonad v) = WrapMonad (liftM f v)
instance Monad m => Applicative (WrappedMonad m) where
pure = WrapMonad . return
WrapMonad f <*> WrapMonad v = WrapMonad (f `ap` v)
instance MonadPlus m => Alternative (WrappedMonad m) where
empty = WrapMonad mzero
WrapMonad u <|> WrapMonad v = WrapMonad (u `mplus` v)
newtype WrappedArrow a b c = WrapArrow { unwrapArrow :: a b c }
instance Arrow a => Functor (WrappedArrow a b) where
fmap f (WrapArrow a) = WrapArrow (a >>> arr f)
instance Arrow a => Applicative (WrappedArrow a b) where
pure x = WrapArrow (arr (const x))
WrapArrow f <*> WrapArrow v = WrapArrow (f &&& v >>> arr (uncurry id))
instance (ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) where
empty = WrapArrow zeroArrow
WrapArrow u <|> WrapArrow v = WrapArrow (u <+> v)
-- | Lists, but with an 'Applicative' functor based on zipping, so that
--
-- @f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsn = 'ZipList' (zipWithn f xs1 ... xsn)@
--
newtype ZipList a = ZipList { getZipList :: [a] }
instance Functor ZipList where
fmap f (ZipList xs) = ZipList (map f xs)
instance Applicative ZipList where
pure x = ZipList (repeat x)
ZipList fs <*> ZipList xs = ZipList (zipWith id fs xs)
-- extra functions
-- | A variant of '<*>' with the arguments reversed.
(<**>) :: Applicative f => f a -> f (a -> b) -> f b
(<**>) = liftA2 (flip ($))
-- | Lift a function to actions.
-- This function may be used as a value for `fmap` in a `Functor` instance.
liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a
-- | Lift a binary function to actions.
liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b
-- | Lift a ternary function to actions.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c
-- | One or none.
optional :: Alternative f => f a -> f (Maybe a)
optional v = Just <$> v <|> pure Nothing