Skip to content

SPM Images

Scanning probe microscopy (SPM) images.

AFM.gle

AFM.gleAFM.gle AFM.zip zip file contains all files for this figure.

AFM.gle
 !-----------------------------------------------------------------!
 ! These graphs illustrate the correlation of the heights and di-!
 ! ameters of a set of InAs self-organized quantum-dots (QD), grown!
 ! over GaAs by means of Molecular Beam Epitaxy. !
 ! The figure was obtained by means of Atomic Force Microscopy. !
 ! The histograms was obtained from the figure by counting and !
 ! measuring the height and diameter of each quantum-dot (each !
 ! circle). The correlation gives rise to what is known as quantum-!
 ! dots families. !
 ! !
 ! Author: Ivan Ramos Pagnossin !
 ! Data: December 2003 !
 ! Project: Master thesis !
 !-----------------------------------------------------------------!

 size 15 15

 set font texcmr

 ! Graph at the lower left corner.
 amove 1.5 1.25
 begin graph
 size 6 6
 fullsize
 xaxis min 20 max 80 dticks 10 dsubticks 5
 yaxis min 0 max 15 dticks 5 dsubticks 1
 xtitle "Diameter (nm)"
 ytitle "Height (nm)"
 ! Quantum dots (QD) diameter-height correlation data.
 data "3um/3um-diameterXheight.dat"
 d1 marker fcircle msize 0.05
 end graph

 ! Graph at the upper left corner.
 amove 1.5 7.25
 begin graph
 size 6 6
 fullsize
 xaxis min 20 max 80 dticks 10 dsubticks 5
 yaxis min -1 max 12 dticks 5 dsubticks 1
 xlabels off
 x2labels on
 x2title "Diameter (nm)"
 ytitle "QDs surface density (10^8 cm^{-2})"
 ! Quantum-dots (QD) diameter distribution.
 data "3um/3um-diameter.dat"
 bar d1 width 0.4 color grey10 fill grey10
 end graph

 ! Graph at the lower right corner.
 amove 7.5 1.25
 begin graph
 size 6 6
 fullsize
 xaxis min -1 max 12 dticks 5 dsubticks 1
 yaxis min 0 max 15 dticks 5 dsubticks 1
 ylabels off
 y2labels on
 xtitle "QDs surface density (10^8 cm^{-2})"
 y2title "Height (nm)"
 ! Quantum-dots (QD) height distribution.
 data "3um/3um-height.dat" 
 bar d1 horiz width 0.1 color grey10 fill grey10 
 end graph

 ! Atomic-force microscopy image at the upper right corner.
 amove 8.2 7.95
 begin name img
 bitmap "3um/3um.png" 5 5
 end name

 set just cc
 amove ptx(img.tc) pty(img.tc)+0.3
 write "Atomic Force Microscopy image"

 amove ptx(img.bl) pty(img.bl)-0.3
 aline ptx(img.br) pty(img.br)-0.3 arrow both
 amove ptx(img.bc) pty(img.bc)-0.3
 begin box add 0.1 nobox fill white
 tex "3 $\mathrm{\mu m}$"
 end box

 set hei 0.45
 amove 7.5 14.7
 write "Self-organized InAs quantum-dots (QD) height-diameter correlation"

bitmap.gle

bitmap.glebitmap.gle bitmap.zip zip file contains all files for this figure.

bitmap.gle
 ! Demo about importing bitmaps.
 ! Author: Francois Tonneau

 ! Original script, bitmap, and figure by Ivan Ramos Pagnossin.

 size 18 10

 ! ==========

 ! Our figure has two panels. We start with panel (a).

 set font ss hei 0.60 just bl
 amove 1.2 8.5
 write "a."

 ! We use the 'bitmap' command to import the 'bitmap.jpg' file into the figure.
 ! The name of the image file is 'bitmap.jpg', and the resulting image will have
 ! a width of 5 cm. A nominal height of 0 tells GLE to respect the aspect ratio
 ! of the bitmap file. The import is done within a 'begin name ... end name'
 ! block to be able to refer to the image by name:

 amove 2.0 2.5
 begin name afm_image
 bitmap "bitmap.jpg" 5 0
 end name

 ! Now that the image has been named ('afm_image'), we can refer to the 'afm_image'
 ! region and its reference points (e.g, 'tc': top center; 'bl': bottom left).
 ! We can also locate their position via the ptx() and pty() functions.

 set hei 0.45 just cc
 amove ptx(afm_image.tc) pty(afm_image.tc)+0.5
 write "AFM Image"

 set lwidth 0.03
 amove ptx(afm_image.bl) pty(afm_image.bl)-0.5
 rline 5 0 arrow both
 rmove -5/2 0
 begin box add 0.1 fill white nobox
 write "3 \sethei{.50}\mu \sethei{0.4}m"
 end box

 ! ==========

 ! We now turn to panel (b), which is a line plot in the 'hist' step style.

 set font ss hei 0.60 just bl
 amove 8.2 8.5
 write "b."

 set hei 0.45

 amove 10.5 2.0
 begin graph
 size 6 6
 fullsize
 xaxis min 16 max 90 ftick 20 dticks 10
 yaxis min 0 max 12 ftick 0 dticks 2
 xside off
 x2axis off
 y2axis off
 xsubticks off
 xticks length -0.1
 xtitle "Diameter (nm)" dist 0.4
 ytitle "QDs surface density (10^{8} cm^{-2})" dist 0.4
 data "bitmap.dat"
 d1 line hist color #004e58
 end graph

 ! We cover the axes with solid lines as a finishing touch:

 set cap square
 amove xg(20) yg(0)
 aline xg(90) yg(0)

 amove xg(16) yg(0)
 rline 0.1 0

 ! Done. We have learned to import bitmap images in GLE.

inpstm.gle

inpstm.gleinpstm.gle inpstm.zip zip file contains all files for this figure.

inpstm.gle
 !
 ! InP(001) STM images three images of the (2x4)/c(2x8) reconstruction
 ! example of how to layout three STM images
 ! By: V.P. LaBella vlabella@albany.edu
 ! the eps output of this gle file was submitted directly
 ! to the journal. See Figure 2 in The Jour. Vac. Sci. & Technology A, Vol. 18 no. 4 pp. 1492 (2000)
 ! be sure to get the stm.gle include from the GLE function repository
 !
 size 15 15

 include stm.gle

 set font ss hei 0.5

 dx = 15; dy = 15
 idx = dx/2; idy = idx

 tbox = idx/2-0.5
 scale_bar_x = 0.2
 scale_bar_y = 0.2

 !
 ! 1000 nm x 1000 nm (2x4)
 !
 amove 0 idy
 box idx idy
 bitmap "tiff/large.png" idx idy
 @textbox 0 2*idy "tl" 0.5 "(a)" 0.05 0.1 1 "WHITE" "BLACK" "BLACK" 0.01
 @scale_bar idx/1000*200 0.3 "200 nm" scale_bar_x idy+scale_bar_y "lr" 0.07 0.1 "WHITE" 1 0.2 0.1

 !
 ! 100 nm x 100 nm (2x4)
 !
 amove idx idy
 box idx idy
 bitmap "tiff/med.png" idx idy
 @textbox idx 2*idy "tl" 0.5 "(b)" 0.05 0.1 1 "WHITE" "BLACK" "BLACK" 0.01
 @scale_bar idx/100*20 0.3 "20 nm" idx+scale_bar_x idy+scale_bar_y "lr" 0.07 0.1 "WHITE" 1 0.2 0.1

 !
 ! 20 nm x 20 nm (2x4)
 !
 amove 0 0
 box idx idy
 bitmap "tiff/small.png" idx idy
 @textbox 0 idy "tl" 0.5 "(c)" 0.05 0.1 1 "WHITE" "BLACK" "BLACK" 0.01
 @scale_bar idx/20*2 0.3 "2 nm" scale_bar_x scale_bar_y "lr" 0.07 0.1 "WHITE" 1 0.2 0.1

 !
 ! draw the direction arrows
 !
 axis_l = 2.0
 @axis_box 1.5*idy 0.5*idy-1.0 "[110]" "[1\={1}0]" 45 0.1 0.1 axis_l "cc" 0 "BLACK" "WHITE" "BLACK" 0.45 0.1

 !
 ! That's it!
 ! All the STM images are in place with the proper scales and labels.
 !
 ! Now draw some text over the images
 ! to identify the unit cell
 ! 2x4 box
 !

 a = 0.7*idx/20

 by2 = 2*sqrt(2)*a/2
 by4 = 2*by2; by8 = 2*by4-0.04
 line1 = 0.07
 line2 = 0.02
 angle = 46

 ! 2x4 box
 amove 2.328 4.419
 begin rotate angle
 set lwidth line1 color white
 box by4 by2
 set color black lwidth line2
 box by4 by2
 end rotate
 xp = xpos()+by4*cos(torad(angle))-by2*sin(torad(angle))
 yp = ypos()+by4*sin(torad(angle))+by2*cos(torad(angle))+0.2
 @textbox xp yp "bc" 0.3 "(2\times 4)" 0.05 0.1 1 "WHITE" "BLACK" "BLACK" 0.01

 !2x8 box
 amove 2.461 1.508
 begin rotate angle
 set lwidth line1 color white
 box by8 by2
 set color black lwidth line2
 box by8 by2
 end rotate
 xp = xpos()+by8*cos(torad(angle))-by2*sin(torad(angle))
 yp = ypos()+by8*sin(torad(angle))+by2*cos(torad(angle))+0.2
 @textbox xp yp "bc" 0.3 "c(2\times 8)" 0.05 0.1 1 "WHITE" "BLACK" "BLACK" 0.01

AltStyle によって変換されたページ (->オリジナル) /