Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

[Bug]: qwen2.5-vl vit fp8 scaled_mm_kernel kernel bug, #26984

Open
Labels
bugSomething isn't working
@WenMang98k

Description

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
 System Info
==============================
OS : Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version : (Debian 10.2.1-6) 10.2.1 20210110
Clang version : Could not collect
CMake version : version 3.18.4
Libc version : glibc-2.31
==============================
 PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
 Python Environment
==============================
Python version : 3.10.15 (main, Jul 10 2025, 19:44:29) [GCC 10.2.1 20210110] (64-bit runtime)
Python platform : Linux-5.4.143.bsk.8-amd64-x86_64-with-glibc2.31
==============================
 CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.4.131
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration : GPU 0: NVIDIA L20
Nvidia driver version : 535.161.08
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
 CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 52 bits physical, 57 bits virtual
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 143
Model name: Intel(R) Xeon(R) Platinum 8457C
Stepping: 8
CPU MHz: 3100.000
CPU max MHz: 3800.0000
CPU min MHz: 800.0000
BogoMIPS: 5200.00
Virtualization: VT-x
L1d cache: 4.5 MiB
L1i cache: 3 MiB
L2 cache: 192 MiB
L3 cache: 195 MiB
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear pconfig flush_l1d arch_capabilities
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.2.14.post1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cudnn-frontend==1.14.0
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pynvml==11.5.3
[pip3] pyzmq==27.0.2
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.53.3
[pip3] triton==3.3.0
[conda] Could not collect
==============================
 vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.9.2
vLLM Build Flags:
 CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
 GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-47,96-143 0 N/A
Legend:
 X = Self
 SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
 NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
 PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
 PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
 PIX = Connection traversing at most a single PCIe bridge
 NV# = Connection traversing a bonded set of # NVLinks
==============================
 Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=GPU-c94daae7-ab06-fc56-5c3b-abbce5325a19
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NCCL_SOCKET_IFNAME==eth0
NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NCCL_DEBUG=INFO
NCCL_IB_GID_INDEX=3
CUDA_VERSION=12.4.0
NCCL_SOCKET_FAMILY=AF_INET6
NCCL_IB_TIMEOUT=23
LD_LIBRARY_PATH=/opt/tiger/native_libhdfs/lib/native:/opt/tiger/jdk/jdk8u265-b01/jre/lib/amd64/server:/opt/tiger/yarn_deploy/hadoop_current/lib/native:/opt/tiger/yarn_deploy/hadoop_current/lib/native/ufs:/opt/tiger/yarn_deploy/hadoop/lib/native:/opt/tiger/yarn_deploy/hadoop_current/lib/native:/opt/tiger/yarn_deploy/hadoop_current/lzo/lib:/opt/tiger/yarn_deploy/hadoop/lib/native:/usr/lib/jvm/java-11-openjdk-amd64/jre/lib/amd64/server:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/extras/CUPTI/lib64
NCCL_IB_DISABLE=0
OMP_NUM_THREADS=22
NCCL_IB_RETRY_CNT=7
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

When deploying the Qwen2.5-VL-7B model with FP8 quantization on vLLM, I encountered the following issue: when I attempted to enable FP8 quantization for the ViT (Vision Transformer), severe performance degradation occurred in the ViT's GEMM (General Matrix Multiplication) operations. Specifically, the latency of an FP8 scaled_mm_kernel degraded from 737 microseconds (in the FP8-wo-ViT scenario) to 40 milliseconds. Here, "FP8-w-ViT" denotes enabling FP8 quantization for the ViT, and "FP8-wo-ViT" denotes not enabling FP8 quantization for the ViT. Could you tell us if this is a problem that has already been encountered, and how to resolve it?

for fp8 without vit
we use following command fp8 quantization
for fp8 with vit
we also use following command fp8 quantization but ignore is ignore=["re:.*lm_head"]

the following pdf is out detailed result 1.vllm qwen2.5-vl-7b vit-fp8 gemm issue.pdf

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /