Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

mnist_cnn_train.py test accuracy values off #4

Open
@jasonkpratt

Description

When the model is created "y = cnn_model.CNN(x) ", the is_training variable is not passed. Thus in the testing section when performing y_final = sess.run(y, feed_dict={x: batch_xs, y_: batch_ys, is_training: False}), the is_training: False has no affect. This will impact your accuracy.

If you use the mnist_cnn_train.py test function, the model is initialized with the is_training parameter and will give a result of approximately .5 % higher.

I changed y = cnn_model.CNN(x, is_training=is_training) and now the accuracy percents match for both modules.

Just as a side note: tf.scalar_summar is deprecated in Tensor 1.4

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

      Relationships

      None yet

      Development

      No branches or pull requests

      Issue actions

        AltStyle によって変換されたページ (->オリジナル) /