1 /*
2 * audio resampling
3 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * audio resampling
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
30
31 /**
32 * 0th order modified bessel function of the first kind.
33 */
36 double lastv=0;
37 double t=1;
38 int i;
39 static const double inv[100]={
40 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
41 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
42 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
43 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
44 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
45 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
46 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
47 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
48 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
49 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
50 };
51
52 x= x*x/4;
53 for(i=0; v != lastv; i++){
55 t *= x*inv[i];
56 v += t;
58 }
60 }
61
62 /**
63 * builds a polyphase filterbank.
64 * @param factor resampling factor
65 * @param scale wanted sum of coefficients for each filter
66 * @param filter_type filter type
67 * @param kaiser_beta kaiser window beta
68 * @return 0 on success, negative on error
69 */
71 int filter_type, int kaiser_beta){
72 int ph, i;
75 const int center= (tap_count-1)/2;
76
77 if (!tab)
79
80 /* if upsampling, only need to interpolate, no filter */
81 if (factor > 1.0)
82 factor = 1.0;
83
84 for(ph=0;ph<phase_count;ph++) {
85 double norm = 0;
86 for(i=0;i<tap_count;i++) {
87 x =
M_PI * ((double)(i - center) - (double)ph / phase_count) *
factor;
88 if (x == 0) y = 1.0;
89 else y = sin(x) / x;
90 switch(filter_type){
92 const float d= -0.5; //first order derivative = -0.5
93 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
94 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
95 else y= d*(-4 + 8*x - 5*x*x + x*x*x);
96 break;}
98 w = 2.0*x / (factor*tap_count) +
M_PI;
99 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
100 break;
102 w = 2.0*x / (factor*tap_count*
M_PI);
104 break;
105 default:
107 }
108
111 }
112
113 /* normalize so that an uniform color remains the same */
116 for(i=0;i<tap_count;i++)
117 ((int16_t*)filter)[ph * alloc + i] = av_clip(
lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
118 break;
120 for(i=0;i<tap_count;i++)
121 ((
int32_t*)filter)[ph * alloc + i] = av_clipl_int32(
llrint(tab[i] * scale / norm));
122 break;
124 for(i=0;i<tap_count;i++)
125 ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
126 break;
128 for(i=0;i<tap_count;i++)
129 ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
130 break;
131 }
132 }
133 #if 0
134 {
135 #define LEN 1024
136 int j,k;
137 double sine[
LEN + tap_count];
138 double filtered[
LEN];
139 double maxff=-2, minff=2, maxsf=-2, minsf=2;
140 for(i=0; i<
LEN; i++){
141 double ss=0, sf=0, ff=0;
142 for(j=0; j<LEN+tap_count; j++)
143 sine[j]= cos(i*j*
M_PI/LEN);
144 for(j=0; j<LEN; j++){
145 double sum=0;
146 ph=0;
147 for(k=0; k<tap_count; k++)
148 sum += filter[ph * tap_count + k] * sine[k+j];
150 ss+= sine[j + center] * sine[j + center];
151 ff+= filtered[j] * filtered[j];
152 sf+= sine[j + center] * filtered[j];
153 }
154 ss= sqrt(2*ss/LEN);
155 ff= sqrt(2*ff/LEN);
156 sf= 2*sf/LEN;
157 maxff=
FFMAX(maxff, ff);
158 minff=
FFMIN(minff, ff);
159 maxsf=
FFMAX(maxsf, sf);
160 minsf=
FFMIN(minsf, sf);
161 if(i%11==0){
162 av_log(
NULL,
AV_LOG_ERROR,
"i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
163 minff=minsf= 2;
164 maxff=maxsf= -2;
165 }
166 }
167 }
168 #endif
169
171 return 0;
172 }
173
176 double precision, int cheby)
177 {
178 double cutoff = cutoff0? cutoff0 : 0.97;
179 double factor=
FFMIN(out_rate * cutoff / in_rate, 1.0);
181
186 if (!c)
188
190
192
196 break;
199 break;
203 break;
204 default:
207 }
208
209 if (filter_size/factor > INT32_MAX/256) {
211 goto error;
212 }
213
224 goto error;
226 goto error;
229 }
230
233 goto error;
237
240
242
244 error:
248 }
249
251 if(!*c)
252 return;
255 }
256
259 if (compensation_distance)
261 else
263
266
267 return 0;
268 }
269
272 int src_size, int dst_size, int update_ctx)
273 {
280
281 dst_size=
FFMIN(dst_size, new_size);
283
288 if (update_ctx) {
291 }
292 } else {
296
297 dst_size =
FFMIN(dst_size, delta_n);
298 if (dst_size > 0) {
299 *consumed = c->
dsp.
resample(c, dst, src, dst_size, update_ctx);
300 } else {
301 *consumed = 0;
302 }
303 }
304
305 return dst_size;
306 }
307
314
317 src_size =
FFMIN(src_size, max_src_size);
318
321 consumed, src_size, dst_size, i+1==dst->
ch_count);
322 }
323 if(need_emms)
324 emms_c();
325
332 }
333 }
334
336 }
337
346 }
347
358 }
359 }
361 return 0;
362 }
363
364 // in fact the whole handle multiple ridiculously small buffers might need more thinking...
366 int in_count, int *out_idx, int *out_sz)
367 {
369
371 return 0;
372
374 return res;
375
376 // copy
377 for (n = *out_sz; n < num; n++) {
378 for (ch = 0; ch < src->
ch_count; ch++) {
381 }
382 }
383
384 // if not enough data is in, return and wait for more
386 *out_sz = num;
388 return INT_MAX;
389 }
390
391 // else invert
393 for (ch = 0; ch < src->
ch_count; ch++) {
397 }
398 }
399
400 res = num - *out_sz;
405
406 return FFMAX(res, 0);
407 }
408
417 };