1 /*
2 * G.723.1 compatible decoder
3 * Copyright (c) 2006 Benjamin Larsson
4 * Copyright (c) 2010 Mohamed Naufal Basheer
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * G.723.1 compatible decoder
26 */
27
28 #define BITSTREAM_READER_LE
39
40 #define CNG_RANDOM_SEED 12345
41
42 typedef struct g723_1_context {
44
52
60
68 int pf_gain;
///< formant postfilter
69 ///< gain scaling unit memory
71
75
76
79 int16_t perf_fir_mem[
LPC_ORDER];
///< perceptual filter fir
80 int16_t perf_iir_mem[
LPC_ORDER];
///< and iir memories
81
84
86 {
88
93
96
99
100 return 0;
101 }
102
103 /**
104 * Unpack the frame into parameters.
105 *
106 * @param p the context
107 * @param buf pointer to the input buffer
108 * @param buf_size size of the input buffer
109 */
111 int buf_size)
112 {
114 int ad_cb_len;
115 int temp, info_bits, i;
116
118
119 /* Extract frame type and rate info */
121
122 if (info_bits == 3) {
124 return 0;
125 }
126
127 /* Extract 24 bit lsp indices, 8 bit for each band */
131
132 if (info_bits == 2) {
135 return 0;
136 }
137
138 /* Extract the info common to both rates */
141
143 if (p->
pitch_lag[0] > 123)
/* test if forbidden code */
144 return -1;
147
150 return -1;
155
157 /* Extract combined gain */
159 ad_cb_len = 170;
163 temp &= 0x7FF;
164 ad_cb_len = 85;
165 }
170 } else {
171 return -1;
172 }
173 }
174
179
182
183 /* Compute pulse_pos index using the 13-bit combined position index */
186
189
193
202
207 } else { /* 5300 bps */
212
217 }
218
219 return 0;
220 }
221
222 /**
223 * Bitexact implementation of sqrt(val/2).
224 */
226 {
228
229 return (
ff_sqrt(val << 1) >> 1) & (~1);
230 }
231
232 /**
233 * Calculate the number of left-shifts required for normalizing the input.
234 *
235 * @param num input number
236 * @param width width of the input, 15 or 31 bits
237 */
239 {
240 return width -
av_log2(num) - 1;
241 }
242
243 #define normalize_bits_int16(num) normalize_bits(num, 15)
244 #define normalize_bits_int32(num) normalize_bits(num, 31)
245
246 /**
247 * Scale vector contents based on the largest of their absolutes.
248 */
250 {
252 int i;
253
254 for (i = 0; i <
length; i++)
255 max |=
FFABS(vector[i]);
256
258 bits=
FFMAX(bits, 0);
259
260 for (i = 0; i <
length; i++)
261 dst[i] = vector[i] << bits >> 3;
262
263 return bits - 3;
264 }
265
266 /**
267 * Perform inverse quantization of LSP frequencies.
268 *
269 * @param cur_lsp the current LSP vector
270 * @param prev_lsp the previous LSP vector
271 * @param lsp_index VQ indices
272 * @param bad_frame bad frame flag
273 */
275 uint8_t *lsp_index,
int bad_frame)
276 {
278 int i, j,
temp, stable;
279
280 /* Check for frame erasure */
281 if (!bad_frame) {
282 min_dist = 0x100;
283 pred = 12288;
284 } else {
285 min_dist = 0x200;
286 pred = 23552;
287 lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
288 }
289
290 /* Get the VQ table entry corresponding to the transmitted index */
301
302 /* Add predicted vector & DC component to the previously quantized vector */
304 temp = ((prev_lsp[i] -
dc_lsp[i]) * pred + (1 << 14)) >> 15;
306 }
307
309 cur_lsp[0] =
FFMAX(cur_lsp[0], 0x180);
310 cur_lsp[LPC_ORDER - 1] =
FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
311
312 /* Stability check */
314 temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
315 if (temp > 0) {
316 temp >>= 1;
317 cur_lsp[j - 1] -=
temp;
319 }
320 }
321 stable = 1;
323 temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
324 if (temp > 0) {
325 stable = 0;
326 break;
327 }
328 }
329 if (stable)
330 break;
331 }
332 if (!stable)
333 memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
334 }
335
336 /**
337 * Bitexact implementation of 2ab scaled by 1/2^16.
338 *
339 * @param a 32 bit multiplicand
340 * @param b 16 bit multiplier
341 */
342 #define MULL2(a, b) \
343 MULL(a,b,15)
344
345 /**
346 * Convert LSP frequencies to LPC coefficients.
347 *
348 * @param lpc buffer for LPC coefficients
349 */
351 {
354 int i, j;
355
356 /* Calculate negative cosine */
358 int index = (lpc[j] >> 7) & 0x1FF;
359 int offset = lpc[j] & 0x7f;
362 ((offset << 8) + 0x80) << 1;
363
364 lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16);
365 }
366
367 /*
368 * Compute sum and difference polynomial coefficients
369 * (bitexact alternative to lsp2poly() in lsp.c)
370 */
371 /* Initialize with values in Q28 */
372 f1[0] = 1 << 28;
373 f1[1] = (lpc[0] << 14) + (lpc[2] << 14);
374 f1[2] = lpc[0] * lpc[2] + (2 << 28);
375
376 f2[0] = 1 << 28;
377 f2[1] = (lpc[1] << 14) + (lpc[3] << 14);
378 f2[2] = lpc[1] * lpc[3] + (2 << 28);
379
380 /*
381 * Calculate and scale the coefficients by 1/2 in
382 * each iteration for a final scaling factor of Q25
383 */
384 for (i = 2; i < LPC_ORDER / 2; i++) {
385 f1[i + 1] = f1[i - 1] +
MULL2(f1[i], lpc[2 * i]);
386 f2[i + 1] = f2[i - 1] +
MULL2(f2[i], lpc[2 * i + 1]);
387
388 for (j = i; j >= 2; j--) {
389 f1[j] =
MULL2(f1[j - 1], lpc[2 * i]) +
390 (f1[j] >> 1) + (f1[j - 2] >> 1);
391 f2[j] =
MULL2(f2[j - 1], lpc[2 * i + 1]) +
392 (f2[j] >> 1) + (f2[j - 2] >> 1);
393 }
394
395 f1[0] >>= 1;
396 f2[0] >>= 1;
397 f1[1] = ((lpc[2 * i] << 16 >> i) + f1[1]) >> 1;
398 f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1;
399 }
400
401 /* Convert polynomial coefficients to LPC coefficients */
402 for (i = 0; i < LPC_ORDER / 2; i++) {
403 int64_t ff1 = f1[i + 1] + f1[i];
404 int64_t ff2 = f2[i + 1] - f2[i];
405
406 lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16;
407 lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) +
408 (1 << 15)) >> 16;
409 }
410 }
411
412 /**
413 * Quantize LSP frequencies by interpolation and convert them to
414 * the corresponding LPC coefficients.
415 *
416 * @param lpc buffer for LPC coefficients
417 * @param cur_lsp the current LSP vector
418 * @param prev_lsp the previous LSP vector
419 */
421 {
422 int i;
423 int16_t *lpc_ptr = lpc;
424
425 /* cur_lsp * 0.25 + prev_lsp * 0.75 */
433
437 }
438 }
439
440 /**
441 * Generate a train of dirac functions with period as pitch lag.
442 */
444 {
446 int i, j;
447
450 for (j = 0; j < SUBFRAME_LEN - i; j++)
451 buf[i + j] += vector[j];
452 }
453 }
454
455 /**
456 * Generate fixed codebook excitation vector.
457 *
458 * @param vector decoded excitation vector
459 * @param subfrm current subframe
460 * @param cur_rate current bitrate
461 * @param pitch_lag closed loop pitch lag
462 * @param index current subframe index
463 */
465 enum Rate cur_rate,
int pitch_lag,
int index)
466 {
468
470
473 return;
474
475 /* Decode amplitudes and positions */
480 if (temp >= 0)
481 continue;
486 } else {
489 }
491 break;
492 }
495 } else { /* 5300 bps */
501
502 for (i = 0; i < 8; i += 2) {
503 offset = ((cb_pos & 7) << 3) + cb_shift + i;
504 vector[
offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
505 cb_pos >>= 3;
506 cb_sign >>= 1;
507 }
508
509 /* Enhance harmonic components */
513
516 vector[i] += beta * vector[i - lag] >> 15;
517 }
518 }
519 }
520
521 /**
522 * Get delayed contribution from the previous excitation vector.
523 */
524 static void get_residual(int16_t *residual, int16_t *prev_excitation,
int lag)
525 {
527 int i;
528
529 residual[0] = prev_excitation[
offset];
530 residual[1] = prev_excitation[offset + 1];
531
532 offset += 2;
534 residual[i] = prev_excitation[offset + (i - 2) % lag];
535 }
536
538 {
540 return av_sat_add32(sum, sum);
541 }
542
543 /**
544 * Generate adaptive codebook excitation.
545 */
549 {
551 const int16_t *cb_ptr;
552 int lag = pitch_lag + subfrm->
ad_cb_lag - 1;
553
554 int i;
555 int sum;
556
558
559 /* Select quantization table */
562 } else
564
565 /* Calculate adaptive vector */
569 vector[i] = av_sat_dadd32(1 << 15, av_sat_add32(sum, sum)) >> 16;
570 }
571 }
572
573 /**
574 * Estimate maximum auto-correlation around pitch lag.
575 *
576 * @param buf buffer with offset applied
577 * @param offset offset of the excitation vector
578 * @param ccr_max pointer to the maximum auto-correlation
579 * @param pitch_lag decoded pitch lag
580 * @param length length of autocorrelation
581 * @param dir forward lag(1) / backward lag(-1)
582 */
584 int pitch_lag,
int length,
int dir)
585 {
586 int limit, ccr, lag = 0;
587 int i;
588
590 if (dir > 0)
592 else
593 limit = pitch_lag + 3;
594
595 for (i = pitch_lag - 3; i <= limit; i++) {
597
598 if (ccr > *ccr_max) {
599 *ccr_max = ccr;
600 lag = i;
601 }
602 }
603 return lag;
604 }
605
606 /**
607 * Calculate pitch postfilter optimal and scaling gains.
608 *
609 * @param lag pitch postfilter forward/backward lag
610 * @param ppf pitch postfilter parameters
611 * @param cur_rate current bitrate
612 * @param tgt_eng target energy
613 * @param ccr cross-correlation
614 * @param res_eng residual energy
615 */
617 int tgt_eng, int ccr, int res_eng)
618 {
619 int pf_residual; /* square of postfiltered residual */
620 int temp1, temp2;
621
623
624 temp1 = tgt_eng * res_eng >> 1;
625 temp2 = ccr * ccr << 1;
626
627 if (temp2 > temp1) {
628 if (ccr >= res_eng) {
630 } else {
631 ppf->
opt_gain = (ccr << 15) / res_eng *
633 }
634 /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
635 temp1 = (tgt_eng << 15) + (ccr * ppf->
opt_gain << 1);
637 pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
638
639 if (tgt_eng >= pf_residual << 1) {
640 temp1 = 0x7fff;
641 } else {
642 temp1 = (tgt_eng << 14) / pf_residual;
643 }
644
645 /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
647 } else {
650 }
651
653 }
654
655 /**
656 * Calculate pitch postfilter parameters.
657 *
658 * @param p the context
659 * @param offset offset of the excitation vector
660 * @param pitch_lag decoded pitch lag
661 * @param ppf pitch postfilter parameters
662 * @param cur_rate current bitrate
663 */
666 {
667
668 int16_t scale;
669 int i;
670 int temp1, temp2;
671
672 /*
673 * 0 - target energy
674 * 1 - forward cross-correlation
675 * 2 - forward residual energy
676 * 3 - backward cross-correlation
677 * 4 - backward residual energy
678 */
679 int energy[5] = {0, 0, 0, 0, 0};
681 int fwd_lag =
autocorr_max(buf, offset, &energy[1], pitch_lag,
683 int back_lag =
autocorr_max(buf, offset, &energy[3], pitch_lag,
685
689
690 /* Case 0, Section 3.6 */
691 if (!back_lag && !fwd_lag)
692 return;
693
694 /* Compute target energy */
696
697 /* Compute forward residual energy */
698 if (fwd_lag)
700
701 /* Compute backward residual energy */
702 if (back_lag)
704
705 /* Normalize and shorten */
706 temp1 = 0;
707 for (i = 0; i < 5; i++)
708 temp1 =
FFMAX(energy[i], temp1);
709
711 for (i = 0; i < 5; i++)
712 energy[i] = (energy[i] << scale) >> 16;
713
714 if (fwd_lag && !back_lag) { /* Case 1 */
716 energy[2]);
717 } else if (!fwd_lag) { /* Case 2 */
719 energy[4]);
720 } else { /* Case 3 */
721
722 /*
723 * Select the largest of energy[1]^2/energy[2]
724 * and energy[3]^2/energy[4]
725 */
726 temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
727 temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
728 if (temp1 >= temp2) {
730 energy[2]);
731 } else {
733 energy[4]);
734 }
735 }
736 }
737
738 /**
739 * Classify frames as voiced/unvoiced.
740 *
741 * @param p the context
742 * @param pitch_lag decoded pitch_lag
743 * @param exc_eng excitation energy estimation
744 * @param scale scaling factor of exc_eng
745 *
746 * @return residual interpolation index if voiced, 0 otherwise
747 */
749 int *exc_eng, int *scale)
750 {
753
755
758
759 /* Compute maximum backward cross-correlation */
760 ccr = 0;
761 index =
autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
762 ccr = av_sat_add32(ccr, 1 << 15) >> 16;
763
764 /* Compute target energy */
766 *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
767
768 if (ccr <= 0)
769 return 0;
770
771 /* Compute best energy */
772 best_eng =
dot_product(buf - index, buf - index, SUBFRAME_LEN * 2);
773 best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
774
775 temp = best_eng * *exc_eng >> 3;
776
777 if (temp < ccr * ccr) {
779 } else
780 return 0;
781 }
782
783 /**
784 * Peform residual interpolation based on frame classification.
785 *
786 * @param buf decoded excitation vector
787 * @param out output vector
788 * @param lag decoded pitch lag
789 * @param gain interpolated gain
790 * @param rseed seed for random number generator
791 */
793 int gain, int *rseed)
794 {
795 int i;
796 if (lag) { /* Voiced */
798 /* Attenuate */
799 for (i = 0; i < lag; i++)
800 out[i] = vector_ptr[i - lag] * 3 >> 2;
803 } else { /* Unvoiced */
805 *rseed = *rseed * 521 + 259;
806 out[i] = gain * *rseed >> 15;
807 }
808 memset(buf, 0, (FRAME_LEN +
PITCH_MAX) *
sizeof(*buf));
809 }
810 }
811
812 /**
813 * Perform IIR filtering.
814 *
815 * @param fir_coef FIR coefficients
816 * @param iir_coef IIR coefficients
817 * @param src source vector
818 * @param dest destination vector
819 * @param width width of the output, 16 bits(0) / 32 bits(1)
820 */
821 #define iir_filter(fir_coef, iir_coef, src, dest, width)\
822 {\
823 int m, n;\
824 int res_shift = 16 & ~-(width);\
825 int in_shift = 16 - res_shift;\
826 \
827 for (m = 0; m < SUBFRAME_LEN; m++) {\
828 int64_t filter = 0;\
829 for (n = 1; n <= LPC_ORDER; n++) {\
830 filter -= (fir_coef)[n - 1] * (src)[m - n] -\
831 (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
832 }\
833 \
834 (dest)[m] = av_clipl_int32(((src)[m] << 16) + (filter << 3) +\
835 (1 << 15)) >> res_shift;\
836 }\
837 }
838
839 /**
840 * Adjust gain of postfiltered signal.
841 *
842 * @param p the context
843 * @param buf postfiltered output vector
844 * @param energy input energy coefficient
845 */
847 {
849 int i;
850
851 num = energy;
852 denom = 0;
854 int temp = buf[i] >> 2;
856 denom = av_sat_dadd32(denom, temp);
857 }
858
859 if (num && denom) {
862 num = num << bits1 >> 1;
864
865 bits2 = 5 + bits1 -
bits2;
866 bits2 =
FFMAX(0, bits2);
867
868 gain = (num >> 1) / (denom >> 16);
870 } else {
871 gain = 1 << 12;
872 }
873
876 buf[i] = av_clip_int16((buf[i] * (p->
pf_gain + (p->
pf_gain >> 4)) +
877 (1 << 10)) >> 11);
878 }
879 }
880
881 /**
882 * Perform formant filtering.
883 *
884 * @param p the context
885 * @param lpc quantized lpc coefficients
886 * @param buf input buffer
887 * @param dst output buffer
888 */
890 int16_t *
buf, int16_t *dst)
891 {
894 int i, j, k;
895
898
902 (1 << 14)) >> 15;
904 (1 << 14)) >> 15;
905 }
906 iir_filter(filter_coef[0], filter_coef[1], buf + i,
907 filter_signal + i, 1);
909 }
910
913
918 int auto_corr[2];
919 int scale, energy;
920
921 /* Normalize */
923
924 /* Compute auto correlation coefficients */
927
928 /* Compute reflection coefficient */
929 temp = auto_corr[1] >> 16;
930 if (temp) {
931 temp = (auto_corr[0] >> 2) / temp;
932 }
935
936 /* Compensation filter */
938 dst[j] = av_sat_dadd32(signal_ptr[j],
939 (signal_ptr[j - 1] >> 16) * temp) >> 16;
940 }
941
942 /* Compute normalized signal energy */
943 temp = 2 * scale + 4;
944 if (temp < 0) {
945 energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
946 } else
947 energy = auto_corr[1] >>
temp;
948
950
954 }
955 }
956
958 {
959 if (gain < 0x10)
960 return gain << 6;
961 else if (gain < 0x20)
962 return gain - 8 << 7;
963 else
964 return gain - 20 << 8;
965 }
966
968 {
969 *state = (*state * 521 + 259) & 0xFFFF;
970 return (*state & 0x7FFF) * base >> 15;
971 }
972
974 {
975 int i,
shift, seg, seg2, t,
val, val_add, x,
y;
976
978 if (shift > 0)
980 else
983
985 return 0x3F;
986
988 shift = 4;
989 seg = 3;
990 } else {
991 shift = 3;
993 }
994 seg2 =
FFMIN(seg, 3);
995
997 val_add = val >> 1;
998 for (i = 0; i <
shift; i++) {
999 t = seg * 32 + (val << seg2);
1000 t *= t;
1001 if (x >= t)
1002 val += val_add;
1003 else
1004 val -= val_add;
1005 val_add >>= 1;
1006 }
1007
1008 t = seg * 32 + (val << seg2);
1009 y = t * t - x;
1010 if (y <= 0) {
1011 t = seg * 32 + (val + 1 << seg2);
1012 t = t * t - x;
1013 val = (seg2 - 1 << 4) + val;
1014 if (t >= y)
1015 val++;
1016 } else {
1017 t = seg * 32 + (val - 1 << seg2);
1018 t = t * t - x;
1019 val = (seg2 - 1 << 4) + val;
1020 if (t >= y)
1021 val--;
1022 }
1023
1025 }
1026
1028 {
1029 int i, j, idx, t;
1033 int16_t *vector_ptr;
1034 int64_t sum;
1036
1039
1043 }
1044
1045 for (i = 0; i < SUBFRAMES / 2; i++) {
1047 off[i * 2] = t & 1;
1049 t >>= 2;
1050 for (j = 0; j < 11; j++) {
1051 signs[i * 11 + j] = (t & 1) * 2 - 1 << 14;
1052 t >>= 1;
1053 }
1054 }
1055
1056 idx = 0;
1059 tmp[j] = j;
1061 for (j = 0; j <
pulses[i]; j++, idx++) {
1063
1064 pos[idx] = tmp[idx2] * 2 + off[i];
1065 tmp[idx2] = tmp[--t];
1066 }
1067 }
1068
1080
1081 t = 0;
1083 t |=
FFABS(vector_ptr[j]);
1084 t =
FFMIN(t, 0x7FFF);
1085 if (!t) {
1086 shift = 0;
1087 } else {
1089 if (shift < -2)
1090 shift = -2;
1091 }
1092 sum = 0;
1093 if (shift < 0) {
1094 for (j = 0; j < SUBFRAME_LEN * 2; j++) {
1095 t = vector_ptr[j] << -
shift;
1096 sum += t * t;
1097 tmp[j] = t;
1098 }
1099 } else {
1100 for (j = 0; j < SUBFRAME_LEN * 2; j++) {
1101 t = vector_ptr[j] >>
shift;
1102 sum += t * t;
1103 tmp[j] = t;
1104 }
1105 }
1106
1107 b0 = 0;
1108 for (j = 0; j < 11; j++)
1109 b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
1110 b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
1111
1113 if (shift * 2 + 3 >= 0)
1114 c >>= shift * 2 + 3;
1115 else
1116 c <<= -(shift * 2 + 3);
1117 c = (av_clipl_int32(sum << 1) -
c) * 2979LL >> 15;
1118
1119 delta = b0 * b0 * 2 -
c;
1120 if (delta <= 0) {
1121 x = -b0;
1122 } else {
1124 x = delta - b0;
1125 t = delta + b0;
1127 x = -t;
1128 }
1129 shift++;
1130 if (shift < 0)
1132 else
1134 x = av_clip(x, -10000, 10000);
1135
1136 for (j = 0; j < 11; j++) {
1137 idx = (i / 2) * 11 + j;
1138 vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
1139 (x * signs[idx] >> 15));
1140 }
1141
1142 /* copy decoded data to serve as a history for the next decoded subframes */
1143 memcpy(vector_ptr +
PITCH_MAX, vector_ptr,
1144 sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
1145 vector_ptr += SUBFRAME_LEN * 2;
1146 }
1147 /* Save the excitation for the next frame */
1150 }
1151
1153 int *got_frame_ptr,
AVPacket *avpkt)
1154 {
1158 int buf_size = avpkt->
size;
1159 int dec_mode = buf[0] & 3;
1160
1166 int bad_frame = 0, i, j,
ret;
1167 int16_t *audio = p->
audio;
1168
1170 if (buf_size)
1172 "Expected %d bytes, got %d - skipping packet\n",
1174 *got_frame_ptr = 0;
1175 return buf_size;
1176 }
1177
1179 bad_frame = 1;
1182 else
1184 }
1185
1189
1190 out = (int16_t *)frame->
data[0];
1191
1193 if (!bad_frame)
1197
1200
1201 /* Save the lsp_vector for the next frame */
1203
1204 /* Generate the excitation for the frame */
1209
1210 /* Update interpolation gain memory */
1219 /* Get the total excitation */
1221 int v = av_clip_int16(vector_ptr[j] << 1);
1222 vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
1223 }
1225 }
1226
1228
1231
1232 /* Peform pitch postfiltering */
1238
1241 vector_ptr + i,
1242 vector_ptr + i + ppf[j].
index,
1246 } else {
1248 }
1249
1250 /* Save the excitation for the next frame */
1253 } else {
1256 /* Mute output */
1261 memset(frame->
data[0], 0,
1263 } else {
1265
1266 /* Regenerate frame */
1269
1270 /* Save the excitation for the next frame */
1273 }
1274 }
1276 } else {
1282 }
1283
1286 else
1290 /* Save the lsp_vector for the next frame */
1292 }
1293
1295
1300 0, 1, 1 << 12);
1302
1305 } else { // if output is not postfiltered it should be scaled by 2
1307 out[i] = av_clip_int16(p->
audio[LPC_ORDER + i] << 1);
1308 }
1309
1310 *got_frame_ptr = 1;
1311
1313 }
1314
1315 #define OFFSET(x) offsetof(G723_1_Context, x)
1316 #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1317
1320 { .i64 = 1 }, 0, 1,
AD },
1322 };
1323
1324
1330 };
1331
1341 .priv_class = &g723_1dec_class,
1342 };
1343
1344 #if CONFIG_G723_1_ENCODER
1345 #define BITSTREAM_WRITER_LE
1347
1349 {
1351
1354 return -1;
1355 }
1356
1360 }
1361
1364 }
else if (avctx->
bit_rate == 5300) {
1367 } else {
1369 "Bitrate not supported, use 6.3k\n");
1371 }
1374
1375 return 0;
1376 }
1377
1378 /**
1379 * Remove DC component from the input signal.
1380 *
1381 * @param buf input signal
1382 * @param fir zero memory
1383 * @param iir pole memory
1384 */
1385 static void highpass_filter(int16_t *
buf, int16_t *fir,
int *iir)
1386 {
1387 int i;
1389 *iir = (buf[i] << 15) + ((-*fir) << 15) +
MULL2(*iir, 0x7f00);
1390 *fir = buf[i];
1391 buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16;
1392 }
1393 }
1394
1395 /**
1396 * Estimate autocorrelation of the input vector.
1397 *
1398 * @param buf input buffer
1399 * @param autocorr autocorrelation coefficients vector
1400 */
1401 static void comp_autocorr(int16_t *buf, int16_t *autocorr)
1402 {
1405
1407
1408 /* Apply the Hamming window */
1411
1412 /* Compute the first autocorrelation coefficient */
1414
1415 /* Apply a white noise correlation factor of (1025/1024) */
1416 temp += temp >> 10;
1417
1418 /* Normalize */
1420 autocorr[0] = av_clipl_int32((int64_t)(temp << scale) +
1421 (1 << 15)) >> 16;
1422
1423 /* Compute the remaining coefficients */
1424 if (!autocorr[0]) {
1425 memset(autocorr + 1, 0,
LPC_ORDER *
sizeof(int16_t));
1426 } else {
1430 autocorr[i] = av_clipl_int32((int64_t)temp + (1 << 15)) >> 16;
1431 }
1432 }
1433 }
1434
1435 /**
1436 * Use Levinson-Durbin recursion to compute LPC coefficients from
1437 * autocorrelation values.
1438 *
1439 * @param lpc LPC coefficients vector
1440 * @param autocorr autocorrelation coefficients vector
1441 * @param error prediction error
1442 */
1443 static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error)
1444 {
1446 int16_t partial_corr;
1448
1449 memset(lpc, 0,
LPC_ORDER *
sizeof(int16_t));
1450
1452 /* Compute the partial correlation coefficient */
1453 temp = 0;
1454 for (j = 0; j < i; j++)
1455 temp -= lpc[j] * autocorr[i - j - 1];
1456 temp = ((autocorr[i] << 13) + temp) << 3;
1457
1458 if (
FFABS(temp) >= (error << 16))
1459 break;
1460
1461 partial_corr = temp / (error << 1);
1462
1463 lpc[i] = av_clipl_int32((int64_t)(partial_corr << 14) +
1464 (1 << 15)) >> 16;
1465
1466 /* Update the prediction error */
1467 temp =
MULL2(temp, partial_corr);
1468 error = av_clipl_int32((int64_t)(error << 16) - temp +
1469 (1 << 15)) >> 16;
1470
1471 memcpy(vector, lpc, i * sizeof(int16_t));
1472 for (j = 0; j < i; j++) {
1473 temp = partial_corr * vector[i - j - 1] << 1;
1474 lpc[j] = av_clipl_int32((int64_t)(lpc[j] << 16) - temp +
1475 (1 << 15)) >> 16;
1476 }
1477 }
1478 }
1479
1480 /**
1481 * Calculate LPC coefficients for the current frame.
1482 *
1483 * @param buf current frame
1484 * @param prev_data 2 trailing subframes of the previous frame
1485 * @param lpc LPC coefficients vector
1486 */
1487 static void comp_lpc_coeff(int16_t *buf, int16_t *lpc)
1488 {
1490 int16_t *autocorr_ptr = autocorr;
1491 int16_t *lpc_ptr = lpc;
1492 int i, j;
1493
1495 comp_autocorr(buf + i, autocorr_ptr);
1496 levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]);
1497
1500 }
1501 }
1502
1503 static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp)
1504 {
1505 int f[
LPC_ORDER + 2];
///< coefficients of the sum and difference
1506 ///< polynomials (F1, F2) ordered as
1507 ///< f1[0], f2[0], ...., f1[5], f2[5]
1508
1510 int i, j;
1512
1513 /* Initialize f1[0] and f2[0] to 1 in Q25 */
1516
1517 /* Apply bandwidth expansion on the LPC coefficients */
1518 f[0] = f[1] = 1 << 25;
1519
1520 /* Compute the remaining coefficients */
1521 for (i = 0; i < LPC_ORDER / 2; i++) {
1522 /* f1 */
1523 f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12);
1524 /* f2 */
1525 f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12);
1526 }
1527
1528 /* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */
1530 f[LPC_ORDER + 1] >>= 1;
1531
1532 /* Normalize and shorten */
1534 for (i = 1; i < LPC_ORDER + 2; i++)
1536
1538
1539 for (i = 0; i < LPC_ORDER + 2; i++)
1540 f[i] = av_clipl_int32((int64_t)(f[i] << shift) + (1 << 15)) >> 16;
1541
1542 /**
1543 * Evaluate F1 and F2 at uniform intervals of pi/256 along the
1544 * unit circle and check for zero crossings.
1545 */
1546 p = 0;
1547 temp = 0;
1548 for (i = 0; i <= LPC_ORDER / 2; i++)
1549 temp += f[2 * i] *
cos_tab[0];
1550 prev_val = av_clipl_int32(temp << 1);
1551 count = 0;
1553 /* Evaluate */
1554 temp = 0;
1555 for (j = 0; j <= LPC_ORDER / 2; j++)
1557 cur_val = av_clipl_int32(temp << 1);
1558
1559 /* Check for sign change, indicating a zero crossing */
1560 if ((cur_val ^ prev_val) < 0) {
1561 int abs_cur =
FFABS(cur_val);
1562 int abs_prev =
FFABS(prev_val);
1563 int sum = abs_cur + abs_prev;
1564
1567 abs_prev = abs_prev << shift >> 8;
1568 lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16);
1569
1570 if (count == LPC_ORDER)
1571 break;
1572
1573 /* Switch between sum and difference polynomials */
1574 p ^= 1;
1575
1576 /* Evaluate */
1577 temp = 0;
1578 for (j = 0; j <= LPC_ORDER / 2; j++){
1579 temp += f[LPC_ORDER - 2 * j + p] *
1581 }
1582 cur_val = av_clipl_int32(temp<<1);
1583 }
1584 prev_val = cur_val;
1585 }
1586
1587 if (count != LPC_ORDER)
1588 memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t));
1589 }
1590
1591 /**
1592 * Quantize the current LSP subvector.
1593 *
1594 * @param num band number
1595 * @param offset offset of the current subvector in an LPC_ORDER vector
1596 * @param size size of the current subvector
1597 */
1598 #define get_index(num, offset, size) \
1599 {\
1600 int error, max = -1;\
1601 int16_t temp[4];\
1602 int i, j;\
1603 for (i = 0; i < LSP_CB_SIZE; i++) {\
1604 for (j = 0; j < size; j++){\
1605 temp[j] = (weight[j + (offset)] * lsp_band##num[i][j] +\
1606 (1 << 14)) >> 15;\
1607 }\
1608 error = dot_product(lsp + (offset), temp, size) << 1;\
1609 error -= dot_product(lsp_band##num[i], temp, size);\
1610 if (error > max) {\
1611 max = error;\
1612 lsp_index[num] = i;\
1613 }\
1614 }\
1615 }
1616
1617 /**
1618 * Vector quantize the LSP frequencies.
1619 *
1620 * @param lsp the current lsp vector
1621 * @param prev_lsp the previous lsp vector
1622 */
1623 static void lsp_quantize(
uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp)
1624 {
1628
1629 /* Calculate the VQ weighting vector */
1630 weight[0] = (1 << 20) / (lsp[1] - lsp[0]);
1633
1635 min =
FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]);
1636 if (min > 0x20)
1637 weight[i] = (1 << 20) / min;
1638 else
1639 weight[i] = INT16_MAX;
1640 }
1641
1642 /* Normalize */
1643 max = 0;
1645 max =
FFMAX(weight[i], max);
1646
1649 weight[i] <<=
shift;
1650 }
1651
1652 /* Compute the VQ target vector */
1655 (((prev_lsp[i] -
dc_lsp[i]) * 12288 + (1 << 14)) >> 15);
1656 }
1657
1658 get_index(0, 0, 3);
1659 get_index(1, 3, 3);
1660 get_index(2, 6, 4);
1661 }
1662
1663 /**
1664 * Apply the formant perceptual weighting filter.
1665 *
1666 * @param flt_coef filter coefficients
1667 * @param unq_lpc unquantized lpc vector
1668 */
1669 static void perceptual_filter(
G723_1_Context *p, int16_t *flt_coef,
1670 int16_t *unq_lpc, int16_t *buf)
1671 {
1673 int i, j, k, l = 0;
1674
1676 memcpy(vector, p->
fir_mem,
sizeof(int16_t) * LPC_ORDER);
1677 memcpy(vector + LPC_ORDER, buf + LPC_ORDER,
sizeof(int16_t) *
FRAME_LEN);
1678
1682 (1 << 14)) >> 15;
1683 flt_coef[k + 2 * l +
LPC_ORDER] = (unq_lpc[k + l] *
1685 (1 << 14)) >> 15;
1686 }
1687 iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER, vector + i,
1688 buf + i, 0);
1690 }
1691 memcpy(p->
iir_mem, buf + FRAME_LEN,
sizeof(int16_t) * LPC_ORDER);
1692 memcpy(p->
fir_mem, vector + FRAME_LEN,
sizeof(int16_t) * LPC_ORDER);
1693 }
1694
1695 /**
1696 * Estimate the open loop pitch period.
1697 *
1698 * @param buf perceptually weighted speech
1699 * @param start estimation is carried out from this position
1700 */
1701 static int estimate_pitch(int16_t *buf,
int start)
1702 {
1703 int max_exp = 32;
1704 int max_ccr = 0x4000;
1705 int max_eng = 0x7fff;
1708
1709 int ccr, eng, orig_eng, ccr_eng, exp;
1711
1712 int i;
1713
1715
1716 for (i = PITCH_MIN; i <=
PITCH_MAX - 3; i++) {
1717 offset--;
1718
1719 /* Update energy and compute correlation */
1723 if (ccr <= 0)
1724 continue;
1725
1726 /* Split into mantissa and exponent to maintain precision */
1728 ccr = av_clipl_int32((int64_t)(ccr << exp) + (1 << 15)) >> 16;
1729 exp <<= 1;
1730 ccr *= ccr;
1732 ccr = ccr << temp >> 16;
1734
1736 eng = av_clipl_int32((int64_t)(orig_eng << temp) + (1 << 15)) >> 16;
1738
1739 if (ccr >= eng) {
1740 exp--;
1741 ccr >>= 1;
1742 }
1743 if (exp > max_exp)
1744 continue;
1745
1746 if (exp + 1 < max_exp)
1748
1749 /* Equalize exponents before comparison */
1750 if (exp + 1 == max_exp)
1751 temp = max_ccr >> 1;
1752 else
1753 temp = max_ccr;
1754 ccr_eng = ccr * max_eng;
1755 diff = ccr_eng - eng *
temp;
1756 if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) {
1758 index = i;
1759 max_exp = exp;
1760 max_ccr = ccr;
1761 max_eng = eng;
1762 }
1763 }
1765 }
1766
1767 /**
1768 * Compute harmonic noise filter parameters.
1769 *
1770 * @param buf perceptually weighted speech
1771 * @param pitch_lag open loop pitch period
1772 * @param hf harmonic filter parameters
1773 */
1774 static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag,
HFParam *hf)
1775 {
1776 int ccr, eng, max_ccr, max_eng;
1778 int energy[15];
1779 int i, j;
1780
1781 for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) {
1782 /* Compute residual energy */
1784 /* Compute correlation */
1786 }
1787
1788 /* Compute target energy */
1790
1791 /* Normalize */
1792 max = 0;
1793 for (i = 0; i < 15; i++)
1795
1797 for (i = 0; i < 15; i++) {
1798 energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) +
1799 (1 << 15)) >> 16;
1800 }
1801
1804 max_ccr = 1;
1805 max_eng = 0x7fff;
1806
1807 for (i = 0; i <= 6; i++) {
1808 eng = energy[i << 1];
1809 ccr = energy[(i << 1) + 1];
1810
1811 if (ccr <= 0)
1812 continue;
1813
1814 ccr = (ccr * ccr + (1 << 14)) >> 15;
1815 diff = ccr * max_eng - eng * max_ccr;
1816 if (diff > 0) {
1817 max_ccr = ccr;
1818 max_eng = eng;
1820 }
1821 }
1822
1823 if (hf->
index == -1) {
1824 hf->
index = pitch_lag;
1825 return;
1826 }
1827
1828 eng = energy[14] * max_eng;
1829 eng = (eng >> 2) + (eng >> 3);
1830 ccr = energy[(hf->
index << 1) + 1] * energy[(hf->
index << 1) + 1];
1831 if (eng < ccr) {
1832 eng = energy[(hf->
index << 1) + 1];
1833
1834 if (eng >= max_eng)
1836 else
1837 hf->
gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15;
1838 }
1839 hf->
index += pitch_lag - 3;
1840 }
1841
1842 /**
1843 * Apply the harmonic noise shaping filter.
1844 *
1845 * @param hf filter parameters
1846 */
1847 static void harmonic_filter(
HFParam *hf,
const int16_t *
src, int16_t *dest)
1848 {
1849 int i;
1850
1853 dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16;
1854 }
1855 }
1856
1857 static void harmonic_noise_sub(
HFParam *hf,
const int16_t *src, int16_t *dest)
1858 {
1859 int i;
1862 dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp +
1863 (1 << 15)) >> 16;
1864
1865 }
1866 }
1867
1868 /**
1869 * Combined synthesis and formant perceptual weighting filer.
1870 *
1871 * @param qnt_lpc quantized lpc coefficients
1872 * @param perf_lpc perceptual filter coefficients
1873 * @param perf_fir perceptual filter fir memory
1874 * @param perf_iir perceptual filter iir memory
1875 * @param scale the filter output will be scaled by 2^scale
1876 */
1877 static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc,
1878 int16_t *perf_fir, int16_t *perf_iir,
1879 const int16_t *src, int16_t *dest, int scale)
1880 {
1881 int i, j;
1884
1886
1887 memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER);
1888 memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER);
1889
1893 temp -= qnt_lpc[j - 1] * bptr_16[i - j];
1894
1895 buf[i] = (src[i] << 15) + (temp << 3);
1896 bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16;
1897 }
1898
1900 int64_t fir = 0, iir = 0;
1902 fir -= perf_lpc[j - 1] * bptr_16[i - j];
1903 iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j];
1904 }
1905 dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) +
1906 (1 << 15)) >> 16;
1907 }
1908 memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER);
1909 memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER,
1910 sizeof(int16_t) * LPC_ORDER);
1911 }
1912
1913 /**
1914 * Compute the adaptive codebook contribution.
1915 *
1916 * @param buf input signal
1917 * @param index the current subframe index
1918 */
1920 int16_t *impulse_resp, const int16_t *buf,
1922 {
1923
1925
1927
1929
1930 int pitch_lag = p->
pitch_lag[index >> 1];
1931 int acb_lag = 1;
1932 int acb_gain = 0;
1933 int odd_frame = index & 1;
1934 int iter = 3 + odd_frame;
1936 int tbl_size = 85;
1937
1938 int i, j, k, l, max;
1940
1941 if (!odd_frame) {
1943 pitch_lag++;
1944 else
1946 }
1947
1948 for (i = 0; i < iter; i++) {
1950
1952 temp = 0;
1953 for (k = 0; k <= j; k++)
1954 temp += residual[
PITCH_ORDER - 1 + k] * impulse_resp[j - k];
1955 flt_buf[
PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) +
1956 (1 << 15)) >> 16;
1957 }
1958
1960 flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15;
1962 temp = (flt_buf[j + 1][k - 1] << 15) +
1963 residual[j] * impulse_resp[k];
1964 flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16;
1965 }
1966 }
1967
1968 /* Compute crosscorrelation with the signal */
1971 ccr_buf[count++] = av_clipl_int32(temp << 1);
1972 }
1973
1974 /* Compute energies */
1976 ccr_buf[count++] =
dot_product(flt_buf[j], flt_buf[j],
1977 SUBFRAME_LEN);
1978 }
1979
1981 for (k = 0; k < j; k++) {
1983 ccr_buf[count++] = av_clipl_int32(temp<<2);
1984 }
1985 }
1986 }
1987
1988 /* Normalize and shorten */
1989 max = 0;
1990 for (i = 0; i < 20 * iter; i++)
1992
1994
1995 for (i = 0; i < 20 * iter; i++){
1996 ccr_buf[i] = av_clipl_int32((int64_t)(ccr_buf[i] << temp) +
1997 (1 << 15)) >> 16;
1998 }
1999
2000 max = 0;
2001 for (i = 0; i < iter; i++) {
2002 /* Select quantization table */
2003 if (!odd_frame && pitch_lag + i - 1 >=
SUBFRAME_LEN - 2 ||
2006 tbl_size = 170;
2007 }
2008
2009 for (j = 0, k = 0; j < tbl_size; j++, k += 20) {
2010 temp = 0;
2011 for (l = 0; l < 20; l++)
2012 temp += ccr_buf[20 * i + l] * cb_tbl[k + l];
2013 temp = av_clipl_int32(temp);
2014
2015 if (temp > max) {
2017 acb_gain = j;
2018 acb_lag = i;
2019 }
2020 }
2021 }
2022
2023 if (!odd_frame) {
2024 pitch_lag += acb_lag - 1;
2025 acb_lag = 1;
2026 }
2027
2031 }
2032
2033 /**
2034 * Subtract the adaptive codebook contribution from the input
2035 * to obtain the residual.
2036 *
2037 * @param buf target vector
2038 */
2039 static void sub_acb_contrib(const int16_t *residual, const int16_t *impulse_resp,
2040 int16_t *buf)
2041 {
2042 int i, j;
2043 /* Subtract adaptive CB contribution to obtain the residual */
2045 int64_t
temp = buf[i] << 14;
2046 for (j = 0; j <= i; j++)
2047 temp -= residual[j] * impulse_resp[i - j];
2048
2049 buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16;
2050 }
2051 }
2052
2053 /**
2054 * Quantize the residual signal using the fixed codebook (MP-MLQ).
2055 *
2056 * @param optim optimized fixed codebook parameters
2057 * @param buf excitation vector
2058 */
2059 static void get_fcb_param(
FCBParam *optim, int16_t *impulse_resp,
2060 int16_t *buf, int pulse_cnt, int pitch_lag)
2061 {
2066
2069 int amp, err, max, max_amp_index,
min, scale, i, j, k, l;
2070
2072
2073 /* Update impulse response */
2074 memcpy(impulse_r, impulse_resp,
sizeof(int16_t) *
SUBFRAME_LEN);
2076 if (pitch_lag < SUBFRAME_LEN - 2) {
2079 }
2080
2082 temp_corr[i] = impulse_r[i] >> 1;
2083
2084 /* Compute impulse response autocorrelation */
2085 temp =
dot_product(temp_corr, temp_corr, SUBFRAME_LEN);
2086
2088 impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
2089
2091 temp =
dot_product(temp_corr + i, temp_corr, SUBFRAME_LEN - i);
2092 impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16;
2093 }
2094
2095 /* Compute crosscorrelation of impulse response with residual signal */
2096 scale -= 4;
2098 temp =
dot_product(buf + i, impulse_r, SUBFRAME_LEN - i);
2099 if (scale < 0)
2100 ccr1[i] = temp >> -scale;
2101 else
2102 ccr1[i] = av_clipl_int32(temp << scale);
2103 }
2104
2105 /* Search loop */
2107 /* Maximize the crosscorrelation */
2108 max = 0;
2110 temp =
FFABS(ccr1[j]);
2111 if (temp >= max) {
2114 }
2115 }
2116
2117 /* Quantize the gain (max crosscorrelation/impulse_corr[0]) */
2118 amp = max;
2119 min = 1 << 30;
2121 for (j = max_amp_index; j >= 2; j--) {
2123 impulse_corr[0] << 1);
2124 temp =
FFABS(temp - amp);
2125 if (temp < min) {
2127 max_amp_index = j;
2128 }
2129 }
2130
2131 max_amp_index--;
2132 /* Select additional gain values */
2133 for (j = 1; j < 5; j++) {
2135 temp_corr[k] = 0;
2136 ccr2[k] = ccr1[k];
2137 }
2138 param.
amp_index = max_amp_index + j - 2;
2140
2143
2144 for (k = 1; k < pulse_cnt; k++) {
2145 max = -1 << 30;
2147 if (temp_corr[l])
2148 continue;
2150 temp = av_clipl_int32((int64_t)temp *
2153 temp =
FFABS(ccr2[l]);
2154 if (temp > max) {
2157 }
2158 }
2159
2161 -amp : amp;
2163 }
2164
2165 /* Create the error vector */
2166 memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN);
2167
2168 for (k = 0; k < pulse_cnt; k++)
2170
2171 for (k = SUBFRAME_LEN - 1; k >= 0; k--) {
2172 temp = 0;
2173 for (l = 0; l <= k; l++) {
2174 int prod = av_clipl_int32((int64_t)temp_corr[l] *
2175 impulse_r[k - l] << 1);
2176 temp = av_clipl_int32(temp + prod);
2177 }
2178 temp_corr[k] = temp << 2 >> 16;
2179 }
2180
2181 /* Compute square of error */
2182 err = 0;
2184 int64_t prod;
2185 prod = av_clipl_int32((int64_t)buf[k] * temp_corr[k] << 1);
2186 err = av_clipl_int32(err - prod);
2187 prod = av_clipl_int32((int64_t)temp_corr[k] * temp_corr[k]);
2188 err = av_clipl_int32(err + prod);
2189 }
2190
2191 /* Minimize */
2192 if (err < optim->min_err) {
2197
2198 for (k = 0; k < pulse_cnt; k++) {
2201 }
2202 }
2203 }
2204 }
2205 }
2206
2207 /**
2208 * Encode the pulse position and gain of the current subframe.
2209 *
2210 * @param optim optimized fixed CB parameters
2211 * @param buf excitation vector
2212 */
2214 int16_t *buf, int pulse_cnt)
2215 {
2216 int i, j;
2217
2219
2222
2223 for (i = 0; i < SUBFRAME_LEN >> 1; i++) {
2225 if (!val) {
2227 } else {
2230 j++;
2231
2233 }
2234 }
2238 }
2239
2240 /**
2241 * Compute the fixed codebook excitation.
2242 *
2243 * @param buf target vector
2244 * @param impulse_resp impulse response of the combined filter
2245 */
2247 int16_t *buf, int index)
2248 {
2251 int i;
2252
2254 get_fcb_param(&optim, impulse_resp, buf, pulse_cnt,
SUBFRAME_LEN);
2255
2257 get_fcb_param(&optim, impulse_resp, buf, pulse_cnt,
2259 }
2260
2261 /* Reconstruct the excitation */
2263 for (i = 0; i < pulse_cnt; i++)
2265
2266 pack_fcb_param(&p->
subframe[index], &optim, buf, pulse_cnt);
2267
2270 }
2271
2272 /**
2273 * Pack the frame parameters into output bitstream.
2274 *
2275 * @param frame output buffer
2276 * @param size size of the buffer
2277 */
2279 {
2281 int info_bits, i,
temp;
2282
2284
2286 info_bits = 0;
2288 }else
2290
2294
2299
2300 /* Write 12 bit combined gain */
2307 }
2308
2313
2316
2317 /* Write 13 bit combined position index */
2323
2328
2333 }
2334
2337 }
2338
2340 const AVFrame *frame,
int *got_packet_ptr)
2341 {
2350 int16_t *
in = in_orig;
2351
2353 int i, j;
2354
2355 if (!in)
2357
2359
2362
2363 comp_lpc_coeff(vector, unq_lpc);
2366
2367 /* Update memory */
2370 memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in,
2374 memcpy(in, vector + LPC_ORDER,
sizeof(int16_t) *
FRAME_LEN);
2375
2376 perceptual_filter(p, weighted_lpc, unq_lpc, vector);
2377
2378 memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN);
2380 memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
2381
2383
2384 p->
pitch_lag[0] = estimate_pitch(vector, PITCH_MAX);
2385 p->
pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN);
2386
2388 comp_harmonic_coeff(vector + i, p->
pitch_lag[j >> 1], hf + j);
2389
2391 memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN);
2392 memcpy(p->
prev_weight_sig, vector + FRAME_LEN,
sizeof(int16_t) * PITCH_MAX);
2393
2395 harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i);
2396
2399
2400 memcpy(p->
prev_lsp, cur_lsp,
sizeof(int16_t) * LPC_ORDER);
2401
2402 offset = 0;
2408
2409 /**
2410 * Compute the combined impulse response of the synthesis filter,
2411 * formant perceptual weighting filter and harmonic noise shaping filter
2412 */
2413 memset(zero, 0, sizeof(int16_t) * LPC_ORDER);
2414 memset(vector, 0, sizeof(int16_t) * PITCH_MAX);
2415 memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN);
2416
2417 flt_in[0] = 1 << 13; /* Unit impulse */
2418 synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
2419 zero, zero, flt_in, vector + PITCH_MAX, 1);
2420 harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp);
2421
2422 /* Compute the combined zero input response */
2423 flt_in[0] = 0;
2424 memcpy(fir, p->
perf_fir_mem,
sizeof(int16_t) * LPC_ORDER);
2425 memcpy(iir, p->
perf_iir_mem,
sizeof(int16_t) * LPC_ORDER);
2426
2427 synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
2428 fir, iir, flt_in, vector + PITCH_MAX, 0);
2429 memcpy(vector, p->
harmonic_mem,
sizeof(int16_t) * PITCH_MAX);
2430 harmonic_noise_sub(hf + i, vector + PITCH_MAX, in);
2431
2432 acb_search(p, residual, impulse_resp, in, i);
2435 sub_acb_contrib(residual, impulse_resp, in);
2436
2437 fcb_search(p, impulse_resp, in, i);
2438
2439 /* Reconstruct the excitation */
2442
2444 sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
2446 in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]);
2448 sizeof(int16_t) * SUBFRAME_LEN);
2449
2450 /* Update filter memories */
2451 synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1),
2453 in, vector + PITCH_MAX, 0);
2455 sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN));
2456 memcpy(p->
harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX,
2457 sizeof(int16_t) * SUBFRAME_LEN);
2458
2461 }
2462
2464
2467
2468 *got_packet_ptr = 1;
2469 avpkt->
size = pack_bitstream(p, avpkt->
data, avpkt->
size);
2470 return 0;
2471 }
2472
2479 .
init = g723_1_encode_init,
2480 .encode2 = g723_1_encode_frame,
2483 };
2484 #endif