1 /*
2 * Copyright (c) 2012 Clément Bœsch
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 /**
22 * @file
23 * EBU R.128 implementation
24 * @see http://tech.ebu.ch/loudness
25 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26 * @todo implement start/stop/reset through filter command injection
27 * @todo support other frequencies to avoid resampling
28 */
29
30 #include <math.h>
31
44
45 #define MAX_CHANNELS 63
46
47 /* pre-filter coefficients */
48 #define PRE_B0 1.53512485958697
49 #define PRE_B1 -2.69169618940638
50 #define PRE_B2 1.19839281085285
51 #define PRE_A1 -1.69065929318241
52 #define PRE_A2 0.73248077421585
53
54 /* RLB-filter coefficients */
58 #define RLB_A1 -1.99004745483398
59 #define RLB_A2 0.99007225036621
60
61 #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
62 #define ABS_UP_THRES 10
///< upper loud limit to consider (ABS_THRES being the minimum)
63 #define HIST_GRAIN 100
///< defines histogram precision
64 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
65
66 /**
67 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
68 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
69 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
70 * This fixed-size system avoids the need of a list of energies growing
71 * infinitely over the time and is thus more scalable.
72 */
74 int count;
///< how many times the corresponding value occurred
75 double energy;
///< E = 10^((L + 0.691) / 10)
76 double loudness;
///< L = -0.691 + 10 * log10(E)
77 };
78
81 int cache_pos;
///< focus on the last added bin in the cache array
82 double sum[
MAX_CHANNELS];
///< sum of the last N ms filtered samples (cache content)
83 int filled;
///< 1 if the cache is completely filled, 0 otherwise
85 double sum_kept_powers;
///< sum of the powers (weighted sums) above absolute threshold
88 };
89
91
93 const AVClass *
class;
///< AVClass context for log and options purpose
94
95 /* peak metering */
100 #if CONFIG_SWRESAMPLE
101 SwrContext *swr_ctx;
///< over-sampling context for true peak metering
102 double *swr_buf; ///< resampled audio data for true peak metering
103 int swr_linesize;
104 #endif
105
106 /* video */
107 int do_video;
///< 1 if video output enabled, 0 otherwise
108 int w, h;
///< size of the video output
109 struct rect text;
///< rectangle for the LU legend on the left
110 struct rect graph;
///< rectangle for the main graph in the center
111 struct rect gauge;
///< rectangle for the gauge on the right
113 int meter;
///< select a EBU mode between +9 and +18
114 int scale_range;
///< the range of LU values according to the meter
115 int y_zero_lu;
///< the y value (pixel position) for 0 LU
116 int *
y_line_ref;
///< y reference values for drawing the LU lines in the graph and the gauge
117
118 /* audio */
121 int sample_count;
///< sample count used for refresh frequency, reset at refresh
122
123 /* Filter caches.
124 * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
126 double y[
MAX_CHANNELS * 3];
///< 3 pre-filter samples cache for each channel
127 double z[
MAX_CHANNELS * 3];
///< 3 RLB-filter samples cache for each channel
128
129 #define I400_BINS (48000 * 4 / 10)
130 #define I3000_BINS (48000 * 3)
131 struct integrator i400;
///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
132 struct integrator i3000;
///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
133
134 /* I and LRA specific */
137 double lra_low, lra_high;
///< low and high LRA values
138
139 /* misc */
141 int metadata;
///< whether or not to inject loudness results in frames
143
144 enum {
148 };
149
150 #define OFFSET(x) offsetof(EBUR128Context, x)
151 #define A AV_OPT_FLAG_AUDIO_PARAM
152 #define V AV_OPT_FLAG_VIDEO_PARAM
153 #define F AV_OPT_FLAG_FILTERING_PARAM
158 {
"framelog",
"force frame logging level",
OFFSET(loglevel),
AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX,
A|
V|
F,
"level" },
167 };
168
170
172 0xdd, 0x66, 0x66, // value above 0LU non reached
173 0x66, 0x66, 0xdd, // value below 0LU non reached
174 0x96, 0x33, 0x33, // value above 0LU reached
175 0x33, 0x33, 0x96, // value below 0LU reached
176 0xdd, 0x96, 0x96, // value above 0LU line non reached
177 0x96, 0x96, 0xdd, // value below 0LU line non reached
178 0xdd, 0x33, 0x33, // value above 0LU line reached
179 0x33, 0x33, 0xdd, // value below 0LU line reached
180 };
181
183 {
184 const int below0 = y > ebur128->
y_zero_lu;
185 const int reached = y >=
v;
187 const int colorid = 4*line + 2*reached + below0;
189 }
190
192 {
193 v += 2 * ebur128->
meter;
// make it in range [0;...]
194 v = av_clipf(v, 0, ebur128->
scale_range);
// make sure it's in the graph scale
195 v = ebur128->
scale_range -
v;
// invert value (y=0 is on top)
196 return v * ebur128->
graph.
h / ebur128->
scale_range;
// rescale from scale range to px height
197 }
198
201
203 0xdd, 0xdd, 0x00,
204 0x00, 0x96, 0x96,
205 };
206
208 {
209 int i;
212 int font_height;
213 va_list vl;
214
217 else return;
218
219 va_start(vl, fmt);
221 va_end(vl);
222
223 for (i = 0; buf[i]; i++) {
226
227 for (char_y = 0; char_y < font_height; char_y++) {
228 for (mask = 0x80;
mask; mask >>= 1) {
229 if (font[buf[i] * font_height + char_y] & mask)
230 memcpy(p, color, 3);
231 else
232 memcpy(p, "\x00\x00\x00", 3);
233 p += 3;
234 }
236 }
237 }
238 }
239
241 {
242 int i;
244
245 for (i = 0; i <
len; i++) {
246 memcpy(p, "\x00\xff\x00", 3);
247 p += step;
248 }
249 }
250
252 {
258
259 /* check if there is enough space to represent everything decently */
260 if (ebur128->
w < 640 || ebur128->
h < 480) {
262 "minimum size is 640x480\n", ebur128->
w, ebur128->
h);
264 }
265 outlink->
w = ebur128->
w;
266 outlink->
h = ebur128->
h;
267
268 #define PAD 8
269
270 /* configure text area position and size */
272 ebur128->
text.
y = 40;
273 ebur128->
text.
w = 3 * 8;
// 3 characters
275
276 /* configure gauge position and size */
281
282 /* configure graph position and size */
287
288 /* graph and gauge share the LU-to-pixel code */
290
291 /* prepare the initial picref buffer */
295 if (!outpicref)
298
299 /* init y references values (to draw LU lines) */
303
304 /* black background */
305 memset(outpicref->
data[0], 0, ebur128->
h * outpicref->
linesize[0]);
306
307 /* draw LU legends */
309 for (i = ebur128->
meter; i >= -ebur128->
meter * 2; i--) {
311 x =
PAD + (i < 10 && i > -10) * 8;
313 y -= 4; // -4 to center vertically
315 "%c%d", i < 0 ? '-' : i > 0 ?
'+' :
' ',
FFABS(i));
316 }
317
318 /* draw graph */
322 for (y = 0; y < ebur128->
graph.
h; y++) {
324
325 for (x = 0; x < ebur128->
graph.
w; x++)
326 memcpy(p + x*3, c, 3);
328 }
329
330 /* draw fancy rectangles around the graph and the gauge */
331 #define DRAW_RECT(r) do { \
332 drawline(outpicref, r.x, r.y - 1, r.w, 3); \
333 drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
334 drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
335 drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
336 } while (0)
339
341
342 return 0;
343 }
344
346 {
349
350 /* Force 100ms framing in case of metadata injection: the frames must have
351 * a granularity of the window overlap to be accurately exploited.
352 * As for the true peaks mode, it just simplifies the resampling buffer
353 * allocation and the lookup in it (since sample buffers differ in size, it
354 * can be more complex to integrate in the one-sample loop of
355 * filter_frame()). */
360 return 0;
361 }
362
364 {
365 int i;
369
370 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
371 AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
372 AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
373 AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
374
379
381 /* channel weighting */
387 } else {
389 }
390
392 continue;
393
394 /* bins buffer for the two integration window (400ms and 3s) */
399 }
400
402
403 #if CONFIG_SWRESAMPLE
406
407 ebur128->swr_buf =
av_malloc_array(nb_channels, 19200 *
sizeof(
double));
411 if (!ebur128->swr_buf || !ebur128->
true_peaks ||
414
418
422
424 if (ret < 0)
426 }
427 #endif
428
433 }
434
435 return 0;
436 }
437
438 #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
439 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
440 #define DBFS(energy) (20 * log10(energy))
441
443 {
444 int i;
446
447 if (!h)
452 }
453 return h;
454 }
455
457 {
460
465 else
467 }
468
471 "True-peak mode requires libswresample to be performed\n");
473 }
474
475 // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
476 // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
478
483
486
487 /* insert output pads */
493 };
497 }
502 };
506
507 /* summary */
509
510 return 0;
511 }
512
513 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
514
515 /* loudness and power should be set such as loudness = -0.691 +
516 * 10*log10(power), we just avoid doing that calculus two times */
519 {
520 int ipower;
521 double relative_threshold;
522 int gate_hist_pos;
523
524 /* update powers histograms by incrementing current power count */
527
528 /* compute relative threshold and get its position in the histogram */
532 if (!relative_threshold)
533 relative_threshold = 1e-12;
536
537 return gate_hist_pos;
538 }
539
541 {
542 int i, ch, idx_insample;
547 const double *samples = (
double *)insamples->
data[0];
549
550 #if CONFIG_SWRESAMPLE
552 const double *swr_samples = ebur128->swr_buf;
555 if (ret < 0)
559 for (idx_insample = 0; idx_insample <
ret; idx_insample++) {
563 FFABS(*swr_samples));
564 swr_samples++;
565 }
566 }
567 }
568 #endif
569
570 for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
573
574 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
575 ebur128->i##time.cache_pos++; \
576 if (ebur128->i##time.cache_pos == I##time##_BINS) { \
577 ebur128->i##time.filled = 1; \
578 ebur128->i##time.cache_pos = 0; \
579 } \
580 } while (0)
581
584
586 double bin;
587
590
591 ebur128->
x[ch * 3] = *samples++;
// set X[i]
592
594 continue;
595
596 /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
597 #define FILTER(Y, X, name) do { \
598 double *dst = ebur128->Y + ch*3; \
599 double *src = ebur128->X + ch*3; \
600 dst[2] = dst[1]; \
601 dst[1] = dst[0]; \
602 dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \
603 - dst[1]*name##_A1 - dst[2]*name##_A2; \
604 } while (0)
605
606 // TODO: merge both filters in one?
607 FILTER(
y, x, PRE);
// apply pre-filter
608 ebur128->
x[ch * 3 + 2] = ebur128->
x[ch * 3 + 1];
609 ebur128->
x[ch * 3 + 1] = ebur128->
x[ch * 3 ];
610 FILTER(z,
y, RLB);
// apply RLB-filter
611
612 bin = ebur128->
z[ch * 3] * ebur128->
z[ch * 3];
613
614 /* add the new value, and limit the sum to the cache size (400ms or 3s)
615 * by removing the oldest one */
618
619 /* override old cache entry with the new value */
620 ebur128->
i400.
cache [ch][bin_id_400 ] = bin;
622 }
623
624 /* For integrated loudness, gating blocks are 400ms long with 75%
625 * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
626 * (4800 samples at 48kHz). */
628 double loudness_400, loudness_3000;
629 double power_400 = 1e-12, power_3000 = 1e-12;
631 const int64_t
pts = insamples->
pts +
634
636
637 #define COMPUTE_LOUDNESS(m, time) do { \
638 if (ebur128->i##time.filled) { \
639 /* weighting sum of the last <time> ms */ \
640 for (ch = 0; ch < nb_channels; ch++) \
641 power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
642 power_##time /= I##time##_BINS; \
643 } \
644 loudness_##time = LOUDNESS(power_##time); \
645 } while (0)
646
649
650 /* Integrated loudness */
651 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
652
654 double integrated_sum = 0;
655 int nb_integrated = 0;
658
659 /* compute integrated loudness by summing the histogram values
660 * above the relative threshold */
661 for (i = gate_hist_pos; i <
HIST_SIZE; i++) {
663 nb_integrated += nb_v;
665 }
666 if (nb_integrated)
668 }
669
670 /* LRA */
671 #define LRA_GATE_THRES -20
672 #define LRA_LOWER_PRC 10
673 #define LRA_HIGHER_PRC 95
674
675 /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
676 * specs is ">" */
678 int nb_powers = 0;
681
682 for (i = gate_hist_pos; i <
HIST_SIZE; i++)
686
687 /* get lower loudness to consider */
688 n = 0;
690 for (i = gate_hist_pos; i <
HIST_SIZE; i++) {
692 if (n >= nb_pow) {
694 break;
695 }
696 }
697
698 /* get higher loudness to consider */
699 n = nb_powers;
701 for (i = HIST_SIZE - 1; i >= 0; i--) {
703 if (n < nb_pow) {
705 break;
706 }
707 }
708
709 // XXX: show low & high on the graph?
711 }
712 }
713
714 #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU"
715
716 /* push one video frame */
720
721 const int y_loudness_lu_graph =
lu_to_y(ebur128, loudness_3000 + 23);
722 const int y_loudness_lu_gauge =
lu_to_y(ebur128, loudness_400 + 23);
723
724 /* draw the graph using the short-term loudness */
725 p = pic->data[0] + ebur128->
graph.
y*pic->linesize[0] + ebur128->
graph.
x*3;
726 for (y = 0; y < ebur128->
graph.
h; y++) {
728
729 memmove(p, p + 3, (ebur128->
graph.
w - 1) * 3);
730 memcpy(p + (ebur128->
graph.
w - 1) * 3, c, 3);
731 p += pic->linesize[0];
732 }
733
734 /* draw the gauge using the momentary loudness */
735 p = pic->data[0] + ebur128->
gauge.
y*pic->linesize[0] + ebur128->
gauge.
x*3;
736 for (y = 0; y < ebur128->
gauge.
h; y++) {
738
739 for (x = 0; x < ebur128->
gauge.
w; x++)
740 memcpy(p + x*3, c, 3);
741 p += pic->linesize[0];
742 }
743
744 /* draw textual info */
746 LOG_FMT " ",
// padding to erase trailing characters
747 loudness_400, loudness_3000,
749
750 /* set pts and push frame */
753 if (ret < 0)
755 }
756
757 if (ebur128->
metadata) {
/* happens only once per filter_frame call */
758 char metabuf[128];
759 #define META_PREFIX "lavfi.r128."
760
761 #define SET_META(name, var) do { \
762 snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
763 av_dict_set(&insamples->metadata, name, metabuf, 0); \
764 } while (0)
765
766 #define SET_META_PEAK(name, ptype) do { \
767 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
768 char key[64]; \
769 for (ch = 0; ch < nb_channels; ch++) { \
770 snprintf(key, sizeof(key), \
771 META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
772 SET_META(key, ebur128->name##_peaks[ch]); \
773 } \
774 } \
775 } while (0)
776
783
786 }
787
790 loudness_400, loudness_3000,
792
793 #define PRINT_PEAKS(str, sp, ptype) do { \
794 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
795 av_log(ctx, ebur128->loglevel, " " str ":"); \
796 for (ch = 0; ch < nb_channels; ch++) \
797 av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
798 av_log(ctx, ebur128->loglevel, " dBFS"); \
799 } \
800 } while (0)
801
806 }
807 }
808
810 }
811
813 {
819
821 static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
823
824 /* set optional output video format */
827 if (!formats)
831 }
832
833 /* set input and output audio formats
834 * Note: ff_set_common_* functions are not used because they affect all the
835 * links, and thus break the video format negotiation */
837 if (!formats)
841
843 if (!layouts)
847
849 if (!formats)
853
854 return 0;
855 }
856
858 {
859 int i;
861
863 " Integrated loudness:\n"
864 " I: %5.1f LUFS\n"
865 " Threshold: %5.1f LUFS\n\n"
866 " Loudness range:\n"
867 " LRA: %5.1f LU\n"
868 " Threshold: %5.1f LUFS\n"
869 " LRA low: %5.1f LUFS\n"
870 " LRA high: %5.1f LUFS",
874
875 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
876 int ch; \
877 double maxpeak; \
878 maxpeak = 0.0; \
879 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
880 for (ch = 0; ch < ebur128->nb_channels; ch++) \
881 maxpeak = FFMAX(maxpeak, sp[ch]); \
882 av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
883 " Peak: %5.1f dBFS", \
884 DBFS(maxpeak)); \
885 } \
886 } while (0)
887
891
902 }
906 #if CONFIG_SWRESAMPLE
909 #endif
910 }
911
913 {
918 },
920 };
921
931 .priv_class = &ebur128_class,
933 };