1 /*
2 * AMR narrowband decoder
3 * Copyright (c) 2006-2007 Robert Swain
4 * Copyright (c) 2009 Colin McQuillan
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23
24 /**
25 * @file
26 * AMR narrowband decoder
27 *
28 * This decoder uses floats for simplicity and so is not bit-exact. One
29 * difference is that differences in phase can accumulate. The test sequences
30 * in 3GPP TS 26.074 can still be useful.
31 *
32 * - Comparing this file's output to the output of the ref decoder gives a
33 * PSNR of 30 to 80. Plotting the output samples shows a difference in
34 * phase in some areas.
35 *
36 * - Comparing both decoders against their input, this decoder gives a similar
37 * PSNR. If the test sequence homing frames are removed (this decoder does
38 * not detect them), the PSNR is at least as good as the reference on 140
39 * out of 169 tests.
40 */
41
42
43 #include <string.h>
44 #include <math.h>
45
59
61
62 #define AMR_BLOCK_SIZE 160 ///< samples per frame
63 #define AMR_SAMPLE_BOUND 32768.0
///< threshold for synthesis overflow
64
65 /**
66 * Scale from constructed speech to [-1,1]
67 *
68 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
69 * upscales by two (section 6.2.2).
70 *
71 * Fundamentally, this scale is determined by energy_mean through
72 * the fixed vector contribution to the excitation vector.
73 */
74 #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
75
76 /** Prediction factor for 12.2kbit/s mode */
77 #define PRED_FAC_MODE_12k2 0.65
78
79 #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
80 #define MIN_LSF_SPACING (50.0488 / 8000.0)
///< Ensures stability of LPC filter
81 #define PITCH_LAG_MIN_MODE_12k2 18
///< Lower bound on decoded lag search in 12.2kbit/s mode
82
83 /** Initial energy in dB. Also used for bad frames (unimplemented). */
84 #define MIN_ENERGY -14.0
85
86 /** Maximum sharpening factor
87 *
88 * The specification says 0.8, which should be 13107, but the reference C code
89 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
90 */
91 #define SHARP_MAX 0.79449462890625
92
93 /** Number of impulse response coefficients used for tilt factor */
94 #define AMR_TILT_RESPONSE 22
95 /** Tilt factor = 1st reflection coefficient * gamma_t */
96 #define AMR_TILT_GAMMA_T 0.8
97 /** Adaptive gain control factor used in post-filter */
98 #define AMR_AGC_ALPHA 0.9
99
101 AMRNBFrame frame;
///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
104
108
111
113
115
117 float *
excitation;
///< pointer to the current excitation vector in excitation_buf
118
121
122 float prediction_error[4];
///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
123 float pitch_gain[5];
///< quantified pitch gains for the current and previous four subframes
124 float fixed_gain[5];
///< quantified fixed gains for the current and previous four subframes
125
126 float beta;
///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
129
133
134 float postfilter_mem[10];
///< previous intermediate values in the formant filter
135 float tilt_mem;
///< previous input to tilt compensation filter
137 float high_pass_mem[2];
///< previous intermediate values in the high-pass filter
138
140
145
147
148 /** Double version of ff_weighted_vector_sumf() */
150 const double *in_b, double weight_coeff_a,
151 double weight_coeff_b,
int length)
152 {
153 int i;
154
155 for (i = 0; i <
length; i++)
156 out[i] = weight_coeff_a * in_a[i]
157 + weight_coeff_b * in_b[i];
158 }
159
161 {
163 int i;
164
168 }
169
175
176 // p->excitation always points to the same position in p->excitation_buf
178
182 }
183
184 for (i = 0; i < 4; i++)
186
191
192 return 0;
193 }
194
195
196 /**
197 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
198 *
199 * The order of speech bits is specified by 3GPP TS 26.101.
200 *
201 * @param p the context
202 * @param buf pointer to the input buffer
203 * @param buf_size size of the input buffer
204 *
205 * @return the frame mode
206 */
208 int buf_size)
209 {
211
212 // Decode the first octet.
213 mode = buf[0] >> 3 & 0x0F; // frame type
215
218 }
219
223
225 }
226
227
228 /// @name AMR pitch LPC coefficient decoding functions
229 /// @{
230
231 /**
232 * Interpolate the LSF vector (used for fixed gain smoothing).
233 * The interpolation is done over all four subframes even in MODE_12k2.
234 *
235 * @param[in] ctx The Context
236 * @param[in,out] lsf_q LSFs in [0,1] for each subframe
237 * @param[in] lsf_new New LSFs in [0,1] for subframe 4
238 */
240 {
241 int i;
242
243 for (i = 0; i < 4; i++)
245 0.25 * (3 - i), 0.25 * (i + 1),
246 LP_FILTER_ORDER);
247 }
248
249 /**
250 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
251 *
252 * @param p the context
253 * @param lsp output LSP vector
254 * @param lsf_no_r LSF vector without the residual vector added
255 * @param lsf_quantizer pointers to LSF dictionary tables
256 * @param quantizer_offset offset in tables
257 * @param sign for the 3 dictionary table
258 * @param update store data for computing the next frame's LSFs
259 */
261 const float lsf_no_r[LP_FILTER_ORDER],
262 const int16_t *lsf_quantizer[5],
263 const int quantizer_offset,
264 const int sign,
const int update)
265 {
268 int i;
269
270 for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
271 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
272 2 * sizeof(*lsf_r));
273
274 if (sign) {
275 lsf_r[4] *= -1;
276 lsf_r[5] *= -1;
277 }
278
279 if (update)
280 memcpy(p->
prev_lsf_r, lsf_r, LP_FILTER_ORDER *
sizeof(*lsf_r));
281
283 lsf_q[i] = lsf_r[i] * (
LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
284
286
287 if (update)
289
291 }
292
293 /**
294 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
295 *
296 * @param p pointer to the AMRContext
297 */
299 {
300 const uint16_t *lsf_param = p->
frame.
lsf;
302 const int16_t *lsf_quantizer[5];
303 int i;
304
305 lsf_quantizer[0] =
lsf_5_1[lsf_param[0]];
306 lsf_quantizer[1] =
lsf_5_2[lsf_param[1]];
307 lsf_quantizer[2] =
lsf_5_3[lsf_param[2] >> 1];
308 lsf_quantizer[3] =
lsf_5_4[lsf_param[3]];
309 lsf_quantizer[4] =
lsf_5_5[lsf_param[4]];
310
313
316
317 // interpolate LSP vectors at subframes 1 and 3
320 }
321
322 /**
323 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
324 *
325 * @param p pointer to the AMRContext
326 */
328 {
329 const uint16_t *lsf_param = p->
frame.
lsf;
332 const int16_t *lsf_quantizer;
333 int i, j;
334
336 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
337
339 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
340
342 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
343
344 // calculate mean-removed LSF vector and add mean
347
349
350 // store data for computing the next frame's LSFs
352 memcpy(p->
prev_lsf_r, lsf_r, LP_FILTER_ORDER *
sizeof(*lsf_r));
353
355
356 // interpolate LSP vectors at subframes 1, 2 and 3
357 for (i = 1; i <= 3; i++)
361 }
362
363 /// @}
364
365
366 /// @name AMR pitch vector decoding functions
367 /// @{
368
369 /**
370 * Like ff_decode_pitch_lag(), but with 1/6 resolution
371 */
373 const int prev_lag_int, const int subframe)
374 {
375 if (subframe == 0 || subframe == 2) {
376 if (pitch_index < 463) {
377 *lag_int = (pitch_index + 107) * 10923 >> 16;
378 *lag_frac = pitch_index - *lag_int * 6 + 105;
379 } else {
380 *lag_int = pitch_index - 368;
381 *lag_frac = 0;
382 }
383 } else {
384 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
385 *lag_frac = pitch_index - *lag_int * 6 - 3;
388 }
389 }
390
393 const int subframe)
394 {
395 int pitch_lag_int, pitch_lag_frac;
397
401 subframe);
402 } else
408
409 p->
pitch_lag_int = pitch_lag_int;
// store previous lag in a uint8_t
410
412
413 pitch_lag_int += pitch_lag_frac > 0;
414
415 /* Calculate the pitch vector by interpolating the past excitation at the
416 pitch lag using a b60 hamming windowed sinc function. */
420 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
422
424 }
425
426 /// @}
427
428
429 /// @name AMR algebraic code book (fixed) vector decoding functions
430 /// @{
431
432 /**
433 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
434 */
436 int i1, int i2, int i3)
437 {
438 // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
439 // the 3 pulses and the upper 7 bits being coded in base 5
441 pulse_position[i1] = (positions[2] << 1) + ( code & 1);
442 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
443 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
444 }
445
446 /**
447 * Decode the algebraic codebook index to pulse positions and signs and
448 * construct the algebraic codebook vector for MODE_10k2.
449 *
450 * @param fixed_index positions of the eight pulses
451 * @param fixed_sparse pointer to the algebraic codebook vector
452 */
455 {
456 int pulse_position[8];
458
461
462 // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
463 // the 2 pulses and the upper 5 bits being coded in base 5
464 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
465 pulse_position[3] = temp % 5;
466 pulse_position[7] = temp / 5;
467 if (pulse_position[7] & 1)
468 pulse_position[3] = 4 - pulse_position[3];
469 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
470 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
471
473 for (i = 0; i < 4; i++) {
474 const int pos1 = (pulse_position[i] << 2) + i;
475 const int pos2 = (pulse_position[i + 4] << 2) + i;
476 const float sign = fixed_index[i] ? -1.0 : 1.0;
477 fixed_sparse->
x[i ] = pos1;
478 fixed_sparse->
x[i + 4] = pos2;
479 fixed_sparse->
y[i ] = sign;
480 fixed_sparse->
y[i + 4] = pos2 < pos1 ? -sign : sign;
481 }
482 }
483
484 /**
485 * Decode the algebraic codebook index to pulse positions and signs,
486 * then construct the algebraic codebook vector.
487 *
488 * nb of pulses | bits encoding pulses
489 * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
490 * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
491 * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
492 * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
493 *
494 * @param fixed_sparse pointer to the algebraic codebook vector
495 * @param pulses algebraic codebook indexes
496 * @param mode mode of the current frame
497 * @param subframe current subframe number
498 */
500 const enum Mode mode,
const int subframe)
501 {
503
508 } else {
509 int *pulse_position = fixed_sparse->
x;
510 int i, pulse_subset;
511 const int fixed_index = pulses[0];
512
514 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
515 pulse_position[0] = ( fixed_index & 7) * 5 +
track_position[pulse_subset];
516 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 +
track_position[pulse_subset + 1];
519 pulse_subset = ((fixed_index & 1) << 1) + 1;
520 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
521 pulse_subset = (fixed_index >> 4) & 3;
522 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
523 fixed_sparse->
n = pulse_position[0] == pulse_position[1] ? 1 : 2;
525 pulse_position[0] = (fixed_index & 7) * 5;
526 pulse_subset = (fixed_index >> 2) & 2;
527 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
528 pulse_subset = (fixed_index >> 6) & 2;
529 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
531 } else { // mode <= MODE_7k95
533 pulse_position[1] =
gray_decode[(fixed_index >> 3) & 7] + 1;
534 pulse_position[2] =
gray_decode[(fixed_index >> 6) & 7] + 2;
535 pulse_subset = (fixed_index >> 9) & 1;
536 pulse_position[3] =
gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
538 }
539 for (i = 0; i < fixed_sparse->
n; i++)
540 fixed_sparse->
y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
541 }
542 }
543
544 /**
545 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
546 *
547 * @param p the context
548 * @param subframe unpacked amr subframe
549 * @param mode mode of the current frame
550 * @param fixed_sparse sparse respresentation of the fixed vector
551 */
554 {
555 // The spec suggests the current pitch gain is always used, but in other
556 // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
557 // so the codebook gain cannot depend on the quantized pitch gain.
560
563
564 // Save pitch sharpening factor for the next subframe
565 // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
566 // the fact that the gains for two subframes are jointly quantized.
569 }
570 /// @}
571
572
573 /// @name AMR gain decoding functions
574 /// @{
575
576 /**
577 * fixed gain smoothing
578 * Note that where the spec specifies the "spectrum in the q domain"
579 * in section 6.1.4, in fact frequencies should be used.
580 *
581 * @param p the context
582 * @param lsf LSFs for the current subframe, in the range [0,1]
583 * @param lsf_avg averaged LSFs
584 * @param mode mode of the current frame
585 *
586 * @return fixed gain smoothed
587 */
589 const float *lsf_avg,
const enum Mode mode)
590 {
592 int i;
593
595 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
596
597 // If diff is large for ten subframes, disable smoothing for a 40-subframe
598 // hangover period.
600 if (diff <= 0.65)
602
605 p->
diff_count--;
// don't let diff_count overflow
606 }
607
611 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
616 (1.0 - smoothing_factor) * fixed_gain_mean;
617 }
619 }
620
621 /**
622 * Decode pitch gain and fixed gain factor (part of section 6.1.3).
623 *
624 * @param p the context
625 * @param amr_subframe unpacked amr subframe
626 * @param mode mode of the current frame
627 * @param subframe current subframe number
628 * @param fixed_gain_factor decoded gain correction factor
629 */
631 const enum Mode mode,
const int subframe,
632 float *fixed_gain_factor)
633 {
636 * (1.0 / 16384.0);
638 * (1.0 / 2048.0);
639 } else {
640 const uint16_t *gains;
641
646 } else {
647 // gain index is only coded in subframes 0,2 for MODE_4k75
649 }
650
651 p->
pitch_gain[4] = gains[0] * (1.0 / 16384.0);
652 *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
653 }
654 }
655
656 /// @}
657
658
659 /// @name AMR preprocessing functions
660 /// @{
661
662 /**
663 * Circularly convolve a sparse fixed vector with a phase dispersion impulse
664 * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
665 *
666 * @param out vector with filter applied
667 * @param in source vector
668 * @param filter phase filter coefficients
669 *
670 * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
671 */
674 {
679 int i;
680
684
685 if (lag < AMR_SUBFRAME_SIZE >> 1)
688 }
689
691 for (i = 0; i < in->
n; i++) {
694 const float *filterp;
695
696 if (x >= AMR_SUBFRAME_SIZE - lag) {
698 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
699 filterp = filter1;
700 } else
701 filterp = filter2;
702
704 }
705 }
706
707 /**
708 * Reduce fixed vector sparseness by smoothing with one of three IR filters.
709 * Also know as "adaptive phase dispersion".
710 *
711 * This implements 3GPP TS 26.090 section 6.1(5).
712 *
713 * @param p the context
714 * @param fixed_sparse algebraic codebook vector
715 * @param fixed_vector unfiltered fixed vector
716 * @param fixed_gain smoothed gain
717 * @param out space for modified vector if necessary
718 */
720 const float *fixed_vector,
721 float fixed_gain,
float *
out)
722 {
723 int ir_filter_nr;
724
726 ir_filter_nr = 0; // strong filtering
728 ir_filter_nr = 1; // medium filtering
729 } else
730 ir_filter_nr = 2; // no filtering
731
732 // detect 'onset'
737
740
741 for (i = 0; i < 5; i++)
743 count++;
744 if (count > 2)
745 ir_filter_nr = 0;
746
748 ir_filter_nr--;
749 } else if (ir_filter_nr < 2)
750 ir_filter_nr++;
751
752 // Disable filtering for very low level of fixed_gain.
753 // Note this step is not specified in the technical description but is in
754 // the reference source in the function Ph_disp.
755 if (fixed_gain < 5.0)
756 ir_filter_nr = 2;
757
759 && ir_filter_nr < 2) {
765 }
766
767 // update ir filter strength history
770
771 return fixed_vector;
772 }
773
774 /// @}
775
776
777 /// @name AMR synthesis functions
778 /// @{
779
780 /**
781 * Conduct 10th order linear predictive coding synthesis.
782 *
783 * @param p pointer to the AMRContext
784 * @param lpc pointer to the LPC coefficients
785 * @param fixed_gain fixed codebook gain for synthesis
786 * @param fixed_vector algebraic codebook vector
787 * @param samples pointer to the output speech samples
788 * @param overflow 16-bit overflow flag
789 */
791 float fixed_gain, const float *fixed_vector,
792 float *samples,
uint8_t overflow)
793 {
794 int i;
796
797 // if an overflow has been detected, the pitch vector is scaled down by a
798 // factor of 4
799 if (overflow)
802
804 p->
pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
805
806 // emphasize pitch vector contribution
809 AMR_SUBFRAME_SIZE);
810 float pitch_factor =
815
818
820 AMR_SUBFRAME_SIZE);
821 }
822
824 AMR_SUBFRAME_SIZE,
826
827 // detect overflow
830 return 1;
831 }
832
833 return 0;
834 }
835
836 /// @}
837
838
839 /// @name AMR update functions
840 /// @{
841
842 /**
843 * Update buffers and history at the end of decoding a subframe.
844 *
845 * @param p pointer to the AMRContext
846 */
848 {
850
853
856
859 }
860
861 /// @}
862
863
864 /// @name AMR Postprocessing functions
865 /// @{
866
867 /**
868 * Get the tilt factor of a formant filter from its transfer function
869 *
870 * @param p The Context
871 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
872 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
873 */
875 {
876 float rh0, rh1; // autocorrelation at lag 0 and 1
877
878 // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
880 float *hf = impulse_buffer +
LP_FILTER_ORDER;
// start of impulse response
881
882 hf[0] = 1.0;
883 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
886 LP_FILTER_ORDER);
887
890
891 // The spec only specifies this check for 12.2 and 10.2 kbit/s
892 // modes. But in the ref source the tilt is always non-negative.
894 }
895
896 /**
897 * Perform adaptive post-filtering to enhance the quality of the speech.
898 * See section 6.2.1.
899 *
900 * @param p pointer to the AMRContext
901 * @param lpc interpolated LP coefficients for this subframe
902 * @param buf_out output of the filter
903 */
905 {
906 int i;
908
911
913 const float *gamma_n, *gamma_d; // Formant filter factor table
915
919 } else {
922 }
923
925 lpc_n[i] = lpc[i] * gamma_n[i];
926 lpc_d[i] = lpc[i] * gamma_d[i];
927 }
928
929 memcpy(pole_out, p->
postfilter_mem,
sizeof(
float) * LP_FILTER_ORDER);
933 sizeof(float) * LP_FILTER_ORDER);
934
936 pole_out + LP_FILTER_ORDER,
938
941
944 }
945
946 /// @}
947
949 int *got_frame_ptr,
AVPacket *avpkt)
950 {
951
955 int buf_size = avpkt->
size;
956 float *buf_out; // pointer to the output data buffer
957 int i, subframe,
ret;
958 float fixed_gain_factor;
959 AMRFixed fixed_sparse = {0};
// fixed vector up to anti-sparseness processing
960 float spare_vector[
AMR_SUBFRAME_SIZE];
// extra stack space to hold result from anti-sparseness processing
961 float synth_fixed_gain; // the fixed gain that synthesis should use
962 const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
963
964 /* get output buffer */
968 buf_out = (
float *)frame->
data[0];
969
974 }
979 }
980
983 } else
985
986 for (i = 0; i < 4; i++)
988
989 for (subframe = 0; subframe < 4; subframe++) {
991
993
996
997 // The fixed gain (section 6.1.3) depends on the fixed vector
998 // (section 6.1.2), but the fixed vector calculation uses
999 // pitch sharpening based on the on the pitch gain (section 6.1.3).
1000 // So the correct order is: pitch gain, pitch sharpening, fixed gain.
1002 &fixed_gain_factor);
1003
1005
1007 av_log(avctx,
AV_LOG_ERROR,
"The file is corrupted, pitch_lag = 0 is not allowed\n");
1009 }
1012
1021
1022 // The excitation feedback is calculated without any processing such
1023 // as fixed gain smoothing. This isn't mentioned in the specification.
1027 AMR_SUBFRAME_SIZE);
1028
1029 // In the ref decoder, excitation is stored with no fractional bits.
1030 // This step prevents buzz in silent periods. The ref encoder can
1031 // emit long sequences with pitch factor greater than one. This
1032 // creates unwanted feedback if the excitation vector is nonzero.
1033 // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
1036
1037 // Smooth fixed gain.
1038 // The specification is ambiguous, but in the reference source, the
1039 // smoothed value is NOT fed back into later fixed gain smoothing.
1042
1044 synth_fixed_gain, spare_vector);
1045
1048 // overflow detected -> rerun synthesis scaling pitch vector down
1049 // by a factor of 4, skipping pitch vector contribution emphasis
1050 // and adaptive gain control
1053
1054 postfilter(p, p->
lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
1055
1056 // update buffers and history
1059 }
1060
1066
1067 /* Update averaged lsf vector (used for fixed gain smoothing).
1068 *
1069 * Note that lsf_avg should not incorporate the current frame's LSFs
1070 * for fixed_gain_smooth.
1071 * The specification has an incorrect formula: the reference decoder uses
1072 * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
1075
1076 *got_frame_ptr = 1;
1077
1078 /* return the amount of bytes consumed if everything was OK */
1080 }
1081
1082
1094 };