1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28
40
41 #include <stdint.h>
43 #include <math.h>
44
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
47
48 #if ARCH_MIPS
50 #endif /* ARCH_MIPS */
51
52 /**
53 * SBR VLC tables
54 */
55 enum {
66 };
67
68 /**
69 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
70 */
71 enum {
76 };
77
78 enum {
80 };
81
84 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
85
86 #define SBR_INIT_VLC_STATIC(num, size) \
87 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88 sbr_tmp[num].sbr_bits , 1, 1, \
89 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
90 size)
91
92 #define SBR_VLC_ROW(name) \
93 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
94
96
98 {
99 static const struct {
100 const void *sbr_codes, *sbr_bits;
101 const unsigned int table_size, elem_size;
102 } sbr_tmp[] = {
113 };
114
115 // SBR VLC table initialization
126
128
130 }
131
132 /** Places SBR in pure upsampling mode. */
135 // Init defults used in pure upsampling mode
136 sbr->
kx[1] = 32;
//Typo in spec, kx' inits to 32
138 // Reset values for first SBR header
141 }
142
144 {
146 return;
147 sbr->
kx[0] = sbr->
kx[1];
151 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153 * and scale back down at synthesis. */
159 }
160
162 {
165 }
166
168 {
169 return *(
const int16_t *)a - *(
const int16_t *)
b;
170 }
171
173 {
174 int i;
175 for (i = 0; i <= last_el; i++)
176 if (table[i] == needle)
177 return 1;
178 return 0;
179 }
180
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
183 {
184 int k;
186 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187 1.18509277094158210129f, //2^(0.49/2)
188 1.11987160404675912501f }; //2^(0.49/3)
189 const float lim_bands_per_octave_warped = bands_warped[sbr->
bs_limiter_bands - 1];
190 int16_t patch_borders[7];
192
193 patch_borders[0] = sbr->
kx[1];
196
200 memcpy(sbr->
f_tablelim + sbr->
n[0] + 1, patch_borders + 1,
201 (sbr->
num_patches - 1) *
sizeof(patch_borders[0]));
202
206
208 while (out < sbr->f_tablelim + sbr->
n_lim) {
209 if (*in >= *
out * lim_bands_per_octave_warped) {
211 }
else if (*in == *
out ||
213 in++;
218 } else {
220 }
221 }
222 } else {
226 }
227 }
228
230 {
236
238
239 // Save last spectrum parameters variables to compare to new ones
241
247
250
251 if (bs_header_extra_1) {
255 } else {
259 }
260
261 // Check if spectrum parameters changed
264
265 if (bs_header_extra_2) {
270 } else {
275 }
276
279
281 }
282
284 {
285 int i,
min = array[0];
286 for (i = 1; i < nel; i++)
287 min =
FFMIN(array[i], min);
289 }
290
292 {
293 int k, previous, present;
294 float base, prod;
295
296 base =
powf((
float)stop / start, 1.0f / num_bands);
299
300 for (k = 0; k < num_bands-1; k++) {
301 prod *= base;
303 bands[k] = present - previous;
304 previous = present;
305 }
306 bands[num_bands-1] = stop - previous;
307 }
308
310 {
311 // Requirements (14496-3 sp04 p205)
312 if (n_master <= 0) {
314 return -1;
315 }
316 if (bs_xover_band >= n_master) {
318 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
319 bs_xover_band);
320 return -1;
321 }
322 return 0;
323 }
324
325 /// Master Frequency Band Table (14496-3 sp04 p194)
328 {
329 unsigned int temp, max_qmf_subbands = 0;
330 unsigned int start_min, stop_min;
331 int k;
332 const int8_t *sbr_offset_ptr;
333 int16_t stop_dk[13];
334
336 temp = 3000;
338 temp = 4000;
339 } else
340 temp = 5000;
341
343 case 16000:
345 break;
346 case 22050:
348 break;
349 case 24000:
351 break;
352 case 32000:
354 break;
355 case 44100: case 48000: case 64000:
357 break;
358 case 88200: case 96000: case 128000: case 176400: case 192000:
360 break;
361 default:
363 "Unsupported sample rate for SBR: %d\n", sbr->
sample_rate);
364 return -1;
365 }
366
369
371
373 sbr->
k[2] = stop_min;
377 sbr->
k[2] += stop_dk[k];
379 sbr->
k[2] = 2*sbr->
k[0];
381 sbr->
k[2] = 3*sbr->
k[0];
382 } else {
385 return -1;
386 }
387 sbr->
k[2] =
FFMIN(64, sbr->
k[2]);
388
389 // Requirements (14496-3 sp04 p205)
391 max_qmf_subbands = 48;
393 max_qmf_subbands = 35;
395 max_qmf_subbands = 32;
396 else
398
399 if (sbr->
k[2] - sbr->
k[0] > max_qmf_subbands) {
401 "Invalid bitstream, too many QMF subbands: %d\n", sbr->
k[2] - sbr->
k[0]);
402 return -1;
403 }
404
406 int dk, k2diff;
407
409 sbr->
n_master = ((sbr->
k[2] - sbr->
k[0] + (dk&2)) >> dk) << 1;
411 return -1;
412
413 for (k = 1; k <= sbr->
n_master; k++)
415
416 k2diff = sbr->
k[2] - sbr->
k[0] - sbr->
n_master * dk;
420 } else if (k2diff) {
422 }
423
425 for (k = 1; k <= sbr->
n_master; k++)
427
428 } else {
429 int half_bands = 7 - spectrum->
bs_freq_scale;
// bs_freq_scale = {1,2,3}
430 int two_regions, num_bands_0;
431 int vdk0_max, vdk1_min;
432 int16_t vk0[49];
433
434 if (49 * sbr->
k[2] > 110 * sbr->
k[0]) {
435 two_regions = 1;
436 sbr->
k[1] = 2 * sbr->
k[0];
437 } else {
438 two_regions = 0;
439 sbr->
k[1] = sbr->
k[2];
440 }
441
442 num_bands_0 =
lrintf(half_bands *
log2f(sbr->
k[1] / (
float)sbr->
k[0])) * 2;
443
444 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
446 return -1;
447 }
448
449 vk0[0] = 0;
450
452
454 vdk0_max = vk0[num_bands_0];
455
457 for (k = 1; k <= num_bands_0; k++) {
458 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
460 return -1;
461 }
462 vk0[k] += vk0[k-1];
463 }
464
465 if (two_regions) {
466 int16_t vk1[49];
467 float invwarp = spectrum->
bs_alter_scale ? 0.76923076923076923077f
468 : 1.0f; // bs_alter_scale = {0,1}
469 int num_bands_1 =
lrintf(half_bands * invwarp *
470 log2f(sbr->
k[2] / (
float)sbr->
k[1])) * 2;
471
473
475
476 if (vdk1_min < vdk0_max) {
477 int change;
479 change =
FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
480 vk1[1] += change;
481 vk1[num_bands_1] -= change;
482 }
483
485
487 for (k = 1; k <= num_bands_1; k++) {
488 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
490 return -1;
491 }
492 vk1[k] += vk1[k-1];
493 }
494
495 sbr->
n_master = num_bands_0 + num_bands_1;
497 return -1;
499 (num_bands_0 + 1) *
sizeof(sbr->
f_master[0]));
500 memcpy(&sbr->
f_master[num_bands_0 + 1], vk1 + 1,
501 num_bands_1 *
sizeof(sbr->
f_master[0]));
502
503 } else {
506 return -1;
508 }
509 }
510
511 return 0;
512 }
513
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
516 {
517 int i, k, sb = 0;
519 int usb = sbr->
kx[1];
521
523
524 if (goal_sb < sbr->kx[1] + sbr->
m[1]) {
525 for (k = 0; sbr->
f_master[k] < goal_sb; k++) ;
526 } else
528
529 do {
530 int odd = 0;
531 for (i = k; i == k || sb > (sbr->
k[0] - 1 + msb - odd); i--) {
533 odd = (sb + sbr->
k[0]) & 1;
534 }
535
536 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
537 // After this check the final number of patches can still be six which is
538 // illegal however the Coding Technologies decoder check stream has a final
539 // count of 6 patches
542 return -1;
543 }
544
547
549 usb = sb;
550 msb = sb;
552 } else
554
557 }
while (sb != sbr->
kx[1] + sbr->
m[1]);
558
562
563 return 0;
564 }
565
566 /// Derived Frequency Band Tables (14496-3 sp04 p197)
568 {
570
572 sbr->
n[0] = (sbr->
n[1] + 1) >> 1;
573
575 (sbr->
n[1] + 1) *
sizeof(sbr->
f_master[0]));
578
579 // Requirements (14496-3 sp04 p205)
580 if (sbr->
kx[1] + sbr->
m[1] > 64) {
582 "Stop frequency border too high: %d\n", sbr->
kx[1] + sbr->
m[1]);
583 return -1;
584 }
585 if (sbr->
kx[1] > 32) {
587 return -1;
588 }
589
591 temp = sbr->
n[1] & 1;
592 for (k = 1; k <= sbr->
n[0]; k++)
594
596 log2f(sbr->
k[2] / (
float)sbr->
kx[1])));
// 0 <= bs_noise_bands <= 3
599 return -1;
600 }
601
603 temp = 0;
604 for (k = 1; k <= sbr->
n_q; k++) {
605 temp += (sbr->
n[0] -
temp) / (sbr->
n_q + 1 - k);
607 }
608
610 return -1;
611
613
616
617 return 0;
618 }
619
621 int elements)
622 {
623 int i;
624 for (i = 0; i < elements; i++) {
626 }
627 }
628
629 /** ceil(log2(index+1)) */
631 0, 1, 2, 2, 3, 3,
632 };
633
636 {
637 int i;
638 unsigned bs_pointer = 0;
639 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
640 int abs_bord_trail = 16;
641 int num_rel_lead, num_rel_trail;
642 unsigned bs_num_env_old = ch_data->
bs_num_env;
643
647
654
657 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
659 return -1;
660 }
661
662 ch_data->
t_env[0] = 0;
664
665 abs_bord_trail = (abs_bord_trail + (ch_data->
bs_num_env >> 1)) /
667 for (i = 0; i < num_rel_lead; i++)
668 ch_data->
t_env[i + 1] = ch_data->
t_env[i] + abs_bord_trail;
669
673 break;
678 ch_data->
t_env[0] = 0;
680
681 for (i = 0; i < num_rel_trail; i++)
684
686
689 break;
695
696 for (i = 0; i < num_rel_lead; i++)
698
700
702 break;
708 ch_data->
bs_num_env = num_rel_lead + num_rel_trail + 1;
709
712 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
714 return -1;
715 }
716
718
719 for (i = 0; i < num_rel_lead; i++)
721 for (i = 0; i < num_rel_trail; i++)
724
726
728 break;
729 }
730
733 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
734 bs_pointer);
735 return -1;
736 }
737
739 if (ch_data->
t_env[i-1] > ch_data->
t_env[i]) {
741 return -1;
742 }
743 }
744
746
747 ch_data->
t_q[0] = ch_data->
t_env[0];
750 unsigned int idx;
755 } else { // VARFIX
756 if (!bs_pointer)
757 idx = 1;
758 else if (bs_pointer == 1)
760 else // bs_pointer > 1
761 idx = bs_pointer - 1;
762 }
763 ch_data->
t_q[1] = ch_data->
t_env[idx];
764 }
765
766 ch_data->
e_a[0] = -(ch_data->
e_a[1] != bs_num_env_old);
// l_APrev
767 ch_data->
e_a[1] = -1;
768 if ((ch_data->
bs_frame_class & 1) && bs_pointer) {
// FIXVAR or VARVAR and bs_pointer != 0
770 }
else if ((ch_data->
bs_frame_class == 2) && (bs_pointer > 1))
// VARFIX and bs_pointer > 1
771 ch_data->
e_a[1] = bs_pointer - 1;
772
773 return 0;
774 }
775
777 //These variables are saved from the previous frame rather than copied
781
782 //These variables are read from the bitstream and therefore copied
785 memcpy(dst->
t_q, src->
t_q,
sizeof(dst->
t_q));
790 dst->
e_a[1] = src->
e_a[1];
791 }
792
793 /// Read how the envelope and noise floor data is delta coded
796 {
799 }
800
801 /// Read inverse filtering data
804 {
805 int i;
806
808 for (i = 0; i < sbr->
n_q; i++)
810 }
811
814 {
816 int i, j, k;
817 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
818 int t_lav, f_lav;
820 const int odd = sbr->
n[1] & 1;
821
824 bits = 5;
829 } else {
830 bits = 6;
835 }
836 } else {
838 bits = 6;
843 } else {
844 bits = 7;
849 }
850 }
851
854 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
856 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++)
859 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++) {
860 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
862 }
863 } else {
864 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++) {
865 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
867 }
868 }
869 } else {
870 ch_data->
env_facs[i + 1][0] = delta *
get_bits(gb, bits);
// bs_env_start_value_balance
871 for (j = 1; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++)
873 }
874 }
875
876 //assign 0th elements of env_facs from last elements
879 }
880
883 {
884 int i, j;
885 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
886 int t_lav, f_lav;
888
894 } else {
899 }
900
903 for (j = 0; j < sbr->
n_q; j++)
905 } else {
906 ch_data->
noise_facs[i + 1][0] = delta *
get_bits(gb, 5);
// bs_noise_start_value_balance or bs_noise_start_value_level
907 for (j = 1; j < sbr->
n_q; j++)
909 }
910 }
911
912 //assign 0th elements of noise_facs from last elements
915 }
916
919 int bs_extension_id, int *num_bits_left)
920 {
921 switch (bs_extension_id) {
924 av_log(ac->
avctx,
AV_LOG_ERROR,
"Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
926 *num_bits_left = 0;
927 } else {
928 #if 1
931 #else
934 *num_bits_left = 0;
935 #endif
936 }
937 break;
938 default:
939 // some files contain 0-padding
940 if (bs_extension_id || *num_bits_left > 16 ||
show_bits(gb, *num_bits_left))
943 *num_bits_left = 0;
944 break;
945 }
946 }
947
951 {
954
956 return -1;
961
964
965 return 0;
966 }
967
971 {
974
977 return -1;
988 } else {
991 return -1;
1000 }
1001
1006
1007 return 0;
1008 }
1009
1012 {
1014
1019 }
1024 }
1025 } else {
1027 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1030 }
1031 if (
get_bits1(gb)) {
// bs_extended_data
1032 int num_bits_left =
get_bits(gb, 4);
// bs_extension_size
1033 if (num_bits_left == 15)
1034 num_bits_left +=
get_bits(gb, 8);
// bs_esc_count
1035
1036 num_bits_left <<= 3;
1037 while (num_bits_left > 7) {
1038 num_bits_left -= 2;
1040 }
1041 if (num_bits_left < 0) {
1043 }
1044 if (num_bits_left > 0)
1046 }
1047
1049 }
1050
1052 {
1053 int err;
1055 if (err >= 0)
1057 if (err < 0) {
1059 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1061 }
1062 }
1063
1064 /**
1065 * Decode Spectral Band Replication extension data; reference: table 4.55.
1066 *
1067 * @param crc flag indicating the presence of CRC checksum
1068 * @param cnt length of TYPE_FIL syntactic element in bytes
1069 *
1070 * @return Returns number of bytes consumed from the TYPE_FIL element.
1071 */
1074 {
1075 unsigned int num_sbr_bits = 0, num_align_bits;
1076 unsigned bytes_read;
1079
1081
1086
1087 if (crc) {
1088 skip_bits(gb, 10);
// bs_sbr_crc_bits; TODO - implement CRC check
1089 num_sbr_bits += 10;
1090 }
1091
1092 //Save some state from the previous frame.
1093 sbr->
kx[0] = sbr->
kx[1];
1094 sbr->
m[0] = sbr->
m[1];
1096
1097 num_sbr_bits++;
1100
1103
1106
1107 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1108 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1109
1110 if (bytes_read > cnt) {
1112 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1113 }
1114 return cnt;
1115 }
1116
1117 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1119 {
1120 int k, e;
1121 int ch;
1122
1130 float fac;
1131 if (temp1 > 1E20) {
1133 temp1 = 1;
1134 }
1135 fac = temp1 / (1.0f + temp2);
1138 }
1139 }
1141 for (k = 0; k < sbr->
n_q; k++) {
1144 float fac;
1145 if (temp1 > 1E20) {
1147 temp1 = 1;
1148 }
1149 fac = temp1 / (1.0f + temp2);
1152 }
1153 }
1154 } else { // SCE or one non-coupled CPE
1155 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
1164 }
1165 }
1166
1168 for (k = 0; k < sbr->
n_q; k++)
1171 }
1172 }
1173 }
1174
1175 /**
1176 * Analysis QMF Bank (14496-3 sp04 p206)
1177 *
1178 * @param x pointer to the beginning of the first sample window
1179 * @param W array of complex-valued samples split into subbands
1180 */
1181 #ifndef sbr_qmf_analysis
1184 float z[320],
float W[2][32][32][2],
int buf_idx)
1185 {
1186 int i;
1187 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1188 memcpy(x+288, in, 1024*sizeof(x[0]));
1189 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1190 // are not supported
1196 x += 32;
1197 }
1198 }
1199 #endif
1200
1201 /**
1202 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1203 * (14496-3 sp04 p206)
1204 */
1205 #ifndef sbr_qmf_synthesis
1208 float *
out,
float X[2][38][64],
1209 float mdct_buf[2][64],
1210 float *
v0,
int *v_off,
const unsigned int div)
1211 {
1214 const int step = 128 >> div;
1216 for (i = 0; i < 32; i++) {
1217 if (*v_off < step) {
1218 int saved_samples = (1280 - 128) >> div;
1221 } else {
1222 *v_off -= step;
1223 }
1224 v = v0 + *v_off;
1225 if (div) {
1226 for (n = 0; n < 32; n++) {
1227 X[0][i][
n] = -X[0][i][
n];
1228 X[0][i][32+
n] = X[1][i][31-
n];
1229 }
1230 mdct->
imdct_half(mdct, mdct_buf[0], X[0][i]);
1232 } else {
1234 mdct->
imdct_half(mdct, mdct_buf[0], X[0][i]);
1235 mdct->
imdct_half(mdct, mdct_buf[1], X[1][i]);
1237 }
1238 dsp->
vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1239 dsp->
vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1240 dsp->
vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1241 dsp->
vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1242 dsp->
vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1243 dsp->
vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1244 dsp->
vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1245 dsp->
vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1246 dsp->
vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1247 dsp->
vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1248 out += 64 >> div;
1249 }
1250 }
1251 #endif
1252
1253 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1254 * (14496-3 sp04 p214)
1255 * Warning: This routine does not seem numerically stable.
1256 */
1258 float (*alpha0)[2], float (*alpha1)[2],
1259 const float X_low[32][40][2], int k0)
1260 {
1261 int k;
1262 for (k = 0; k < k0; k++) {
1264 float dk;
1265
1267
1268 dk = phi[2][1][0] * phi[1][0][0] -
1269 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1270
1271 if (!dk) {
1272 alpha1[k][0] = 0;
1273 alpha1[k][1] = 0;
1274 } else {
1275 float temp_real, temp_im;
1276 temp_real = phi[0][0][0] * phi[1][1][0] -
1277 phi[0][0][1] * phi[1][1][1] -
1278 phi[0][1][0] * phi[1][0][0];
1279 temp_im = phi[0][0][0] * phi[1][1][1] +
1280 phi[0][0][1] * phi[1][1][0] -
1281 phi[0][1][1] * phi[1][0][0];
1282
1283 alpha1[k][0] = temp_real / dk;
1284 alpha1[k][1] = temp_im / dk;
1285 }
1286
1287 if (!phi[1][0][0]) {
1288 alpha0[k][0] = 0;
1289 alpha0[k][1] = 0;
1290 } else {
1291 float temp_real, temp_im;
1292 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1293 alpha1[k][1] * phi[1][1][1];
1294 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1295 alpha1[k][0] * phi[1][1][1];
1296
1297 alpha0[k][0] = -temp_real / phi[1][0][0];
1298 alpha0[k][1] = -temp_im / phi[1][0][0];
1299 }
1300
1301 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1302 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1303 alpha1[k][0] = 0;
1304 alpha1[k][1] = 0;
1305 alpha0[k][0] = 0;
1306 alpha0[k][1] = 0;
1307 }
1308 }
1309 }
1310
1311 /// Chirp Factors (14496-3 sp04 p214)
1313 {
1314 int i;
1315 float new_bw;
1316 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1317
1318 for (i = 0; i < sbr->
n_q; i++) {
1320 new_bw = 0.6f;
1321 } else
1323
1324 if (new_bw < ch_data->bw_array[i]) {
1325 new_bw = 0.75f * new_bw + 0.25f * ch_data->
bw_array[i];
1326 } else
1327 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->
bw_array[i];
1328 ch_data->
bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1329 }
1330 }
1331
1332 /// Generate the subband filtered lowband
1334 float X_low[32][40][2],
const float W[2][32][32][2],
1335 int buf_idx)
1336 {
1337 int i, k;
1338 const int t_HFGen = 8;
1339 const int i_f = 32;
1340 memset(X_low, 0, 32*sizeof(*X_low));
1341 for (k = 0; k < sbr->
kx[1]; k++) {
1342 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1343 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1344 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1345 }
1346 }
1347 buf_idx = 1-buf_idx;
1348 for (k = 0; k < sbr->
kx[0]; k++) {
1349 for (i = 0; i < t_HFGen; i++) {
1350 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1351 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1352 }
1353 }
1354 return 0;
1355 }
1356
1357 /// High Frequency Generator (14496-3 sp04 p215)
1359 float X_high[64][40][2], const float X_low[32][40][2],
1360 const float (*alpha0)[2], const float (*alpha1)[2],
1361 const float bw_array[5],
const uint8_t *t_env,
1362 int bs_num_env)
1363 {
1364 int j, x;
1371 g++;
1372 g--;
1373
1374 if (g < 0) {
1376 "ERROR : no subband found for frequency %d\n", k);
1377 return -1;
1378 }
1379
1382 alpha0[p], alpha1[p], bw_array[g],
1383 2 * t_env[0], 2 * t_env[bs_num_env]);
1384 }
1385 }
1386 if (k < sbr->
m[1] + sbr->
kx[1])
1387 memset(X_high + k, 0, (sbr->
m[1] + sbr->
kx[1] - k) *
sizeof(*X_high));
1388
1389 return 0;
1390 }
1391
1392 /// Generate the subband filtered lowband
1394 const float Y0[38][64][2], const float Y1[38][64][2],
1395 const float X_low[32][40][2], int ch)
1396 {
1397 int k, i;
1398 const int i_f = 32;
1400 memset(X, 0, 2*sizeof(*X));
1401 for (k = 0; k < sbr->
kx[0]; k++) {
1402 for (i = 0; i < i_Temp; i++) {
1405 }
1406 }
1407 for (; k < sbr->
kx[0] + sbr->
m[0]; k++) {
1408 for (i = 0; i < i_Temp; i++) {
1409 X[0][i][k] = Y0[i + i_f][k][0];
1410 X[1][i][k] = Y0[i + i_f][k][1];
1411 }
1412 }
1413
1414 for (k = 0; k < sbr->
kx[1]; k++) {
1415 for (i = i_Temp; i < 38; i++) {
1418 }
1419 }
1420 for (; k < sbr->
kx[1] + sbr->
m[1]; k++) {
1421 for (i = i_Temp; i < i_f; i++) {
1422 X[0][i][k] = Y1[i][k][0];
1423 X[1][i][k] = Y1[i][k][1];
1424 }
1425 }
1426 return 0;
1427 }
1428
1429 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1430 * (14496-3 sp04 p217)
1431 */
1434 {
1436
1439 const unsigned int ilim = sbr->
n[ch_data->
bs_freq_res[e + 1]];
1441 int k;
1442
1443 if (sbr->
kx[1] != table[0]) {
1445 "Derived frequency tables were not regenerated.\n");
1448 }
1449 for (i = 0; i < ilim; i++)
1450 for (m = table[i]; m < table[i + 1]; m++)
1452
1453 // ch_data->bs_num_noise > 1 => 2 noise floors
1455 for (i = 0; i < sbr->
n_q; i++)
1456 for (m = sbr->
f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1458
1459 for (i = 0; i < sbr->
n[1]; i++) {
1461 const unsigned int m_midpoint =
1463
1465 (e >= e_a[1] || (ch_data->
s_indexmapped[0][m_midpoint - sbr->
kx[1]] == 1));
1466 }
1467 }
1468
1469 for (i = 0; i < ilim; i++) {
1470 int additional_sinusoid_present = 0;
1471 for (m = table[i]; m < table[i + 1]; m++) {
1473 additional_sinusoid_present = 1;
1474 break;
1475 }
1476 }
1477 memset(&sbr->
s_mapped[e][table[i] - sbr->
kx[1]], additional_sinusoid_present,
1478 (table[i + 1] - table[i]) *
sizeof(sbr->
s_mapped[e][0]));
1479 }
1480 }
1481
1483 return 0;
1484 }
1485
1486 /// Estimation of current envelope (14496-3 sp04 p218)
1489 {
1491 int kx1 = sbr->
kx[1];
1492
1495 const float recip_env_size = 0.5f / (ch_data->
t_env[e + 1] - ch_data->
t_env[e]);
1498
1499 for (m = 0; m < sbr->
m[1]; m++) {
1500 float sum = sbr->
dsp.
sum_square(X_high[m+kx1] + ilb, iub - ilb);
1501 e_curr[e][
m] = sum * recip_env_size;
1502 }
1503 }
1504 } else {
1505 int k, p;
1506
1508 const int env_size = 2 * (ch_data->
t_env[e + 1] - ch_data->
t_env[e]);
1512
1513 for (p = 0; p < sbr->
n[ch_data->
bs_freq_res[e + 1]]; p++) {
1514 float sum = 0.0f;
1515 const int den = env_size * (table[p + 1] - table[p]);
1516
1517 for (k = table[p]; k < table[p + 1]; k++) {
1519 }
1520 sum /= den;
1521 for (k = table[p]; k < table[p + 1]; k++) {
1522 e_curr[e][k - kx1] = sum;
1523 }
1524 }
1525 }
1526 }
1527 }
1528
1529 /**
1530 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1531 * and Calculation of gain (14496-3 sp04 p219)
1532 */
1534 SBRData *ch_data,
const int e_a[2])
1535 {
1537 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1538 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1539
1541 int delta = !((e == e_a[1]) || (e == e_a[0]));
1542 for (k = 0; k < sbr->
n_lim; k++) {
1543 float gain_boost, gain_max;
1544 float sum[2] = { 0.0f, 0.0f };
1545 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1551 ((1.0f + sbr->
e_curr[e][m]) *
1552 (1.0f + sbr->
q_mapped[e][m] * delta)));
1553 } else {
1555 ((1.0f + sbr->
e_curr[e][m]) *
1557 }
1558 }
1559 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1562 }
1563 gain_max = limgain[sbr->
bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1564 gain_max =
FFMIN(100000.f, gain_max);
1565 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1566 float q_m_max = sbr->
q_m[e][
m] * gain_max / sbr->
gain[e][
m];
1569 }
1570 sum[0] = sum[1] = 0.0f;
1571 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1575 + (delta && !sbr->
s_m[e][
m]) * sbr->
q_m[e][m] * sbr->
q_m[e][m];
1576 }
1577 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1578 gain_boost =
FFMIN(1.584893192f, gain_boost);
1579 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1580 sbr->
gain[e][
m] *= gain_boost;
1581 sbr->
q_m[e][
m] *= gain_boost;
1582 sbr->
s_m[e][
m] *= gain_boost;
1583 }
1584 }
1585 }
1586 }
1587
1588 /// Assembling HF Signals (14496-3 sp04 p220)
1590 const float X_high[64][40][2],
1592 const int e_a[2])
1593 {
1596 const int kx = sbr->
kx[1];
1597 const int m_max = sbr->
m[1];
1598 static const float h_smooth[5] = {
1599 0.33333333333333,
1600 0.30150283239582,
1601 0.21816949906249,
1602 0.11516383427084,
1603 0.03183050093751,
1604 };
1605 float (*g_temp)[48] = ch_data->
g_temp, (*q_temp)[48] = ch_data->
q_temp;
1608
1610 for (i = 0; i < h_SL; i++) {
1611 memcpy(g_temp[i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
1612 memcpy(q_temp[i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
1613 }
1614 } else if (h_SL) {
1615 for (i = 0; i < 4; i++) {
1616 memcpy(g_temp[i + 2 * ch_data->
t_env[0]],
1618 sizeof(g_temp[0]));
1619 memcpy(q_temp[i + 2 * ch_data->
t_env[0]],
1621 sizeof(q_temp[0]));
1622 }
1623 }
1624
1626 for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1627 memcpy(g_temp[h_SL + i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
1628 memcpy(q_temp[h_SL + i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
1629 }
1630 }
1631
1633 for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1636 float *g_filt, *q_filt;
1637
1638 if (h_SL && e != e_a[0] && e != e_a[1]) {
1639 g_filt = g_filt_tab;
1640 q_filt = q_filt_tab;
1641 for (m = 0; m < m_max; m++) {
1642 const int idx1 = i + h_SL;
1645 for (j = 0; j <= h_SL; j++) {
1646 g_filt[
m] += g_temp[idx1 - j][
m] * h_smooth[j];
1647 q_filt[
m] += q_temp[idx1 - j][
m] * h_smooth[j];
1648 }
1649 }
1650 } else {
1651 g_filt = g_temp[i + h_SL];
1652 q_filt = q_temp[i];
1653 }
1654
1655 sbr->
dsp.
hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1657
1658 if (e != e_a[0] && e != e_a[1]) {
1660 q_filt, indexnoise,
1661 kx, m_max);
1662 } else {
1663 int idx = indexsine&1;
1664 int A = (1-((indexsine+(kx & 1))&2));
1665 int B = (A^(-idx)) + idx;
1666 float *
out = &Y1[i][kx][idx];
1667 float *
in = sbr->
s_m[e];
1668 for (m = 0; m+1 < m_max; m+=2) {
1669 out[2*
m ] += in[
m ] *
A;
1670 out[2*m+2] += in[m+1] *
B;
1671 }
1672 if(m_max&1)
1673 out[2*
m ] += in[
m ] *
A;
1674 }
1675 indexnoise = (indexnoise + m_max) & 0x1ff;
1676 indexsine = (indexsine + 1) & 3;
1677 }
1678 }
1681 }
1682
1685 {
1687 int ch;
1688 int nch = (id_aac ==
TYPE_CPE) ? 2 : 1;
1689 int err;
1690
1692 sbr->
kx[0] = sbr->
kx[1];
1693 sbr->
m[0] = sbr->
m[1];
1694 } else {
1696 }
1697
1700 }
1701 for (ch = 0; ch < nch; ch++) {
1702 /* decode channel */
1707 (
const float (*)[32][32][2]) sbr->
data[ch].
W,
1712 (
const float (*)[40][2]) sbr->
X_low, sbr->
k[0]);
1715 (
const float (*)[40][2]) sbr->
X_low,
1716 (
const float (*)[2]) sbr->
alpha0,
1717 (
const float (*)[2]) sbr->
alpha1,
1720
1721 // hf_adj
1723 if (!err) {
1727 (
const float (*)[40][2]) sbr->
X_high,
1728 sbr, &sbr->
data[ch],
1730 }
1731 }
1732
1733 /* synthesis */
1735 (
const float (*)[64][2]) sbr->
data[ch].
Y[1-sbr->
data[ch].
Ypos],
1736 (
const float (*)[64][2]) sbr->
data[ch].
Y[ sbr->
data[ch].
Ypos],
1737 (
const float (*)[40][2]) sbr->
X_low, ch);
1738 }
1739
1743 } else {
1744 memcpy(sbr->
X[1], sbr->
X[0],
sizeof(sbr->
X[0]));
1745 }
1746 nch = 2;
1747 }
1748
1753 downsampled);
1754 if (nch == 2)
1759 downsampled);
1760 }
1761
1763 {
1768
1769 if(ARCH_MIPS)
1771 }