1 /*
2 * HEVC video Decoder
3 *
4 * Copyright (C) 2012 - 2013 Guillaume Martres
5 * Copyright (C) 2013 Anand Meher Kotra
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
25
27 { 0, 1, },
28 { 1, 0, },
29 { 0, 2, },
30 { 2, 0, },
31 { 1, 2, },
32 { 2, 1, },
33 { 0, 3, },
34 { 3, 0, },
35 { 1, 3, },
36 { 3, 1, },
37 { 2, 3, },
38 { 3, 2, },
39 };
40
42 {
46
58 }
59
60 /*
61 * 6.4.1 Derivation process for z-scan order block availability
62 */
64 int xN, int yN)
65 {
66 #define MIN_TB_ADDR_ZS(x, y) \
67 s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)]
71
72 if ((xN < 0) || (yN < 0) ||
75 return 0;
76
79
80 return N <= Curr;
81 }
82
83
85 int x0, int y0, int nPbW, int nPbH,
86 int xA1, int yA1, int partIdx)
87 {
88 return !(nPbW << 1 == 1 << log2_cb_size &&
89 nPbH << 1 == 1 << log2_cb_size && partIdx == 1 &&
90 lc->
cu.
x + nPbW > xA1 &&
91 lc->
cu.
y + nPbH <= yA1);
92 }
93
94 /*
95 * 6.4.2 Derivation process for prediction block availability
96 */
98 int x0, int y0, int nPbW, int nPbH,
99 int xA1, int yA1, int partIdx)
100 {
102
103 if (lc->
cu.
x < xA1 && lc->
cu.
y < yA1 &&
104 (lc->
cu.
x + (1 << log2_cb_size)) > xA1 &&
105 (lc->
cu.
y + (1 << log2_cb_size)) > yA1)
107 nPbW, nPbH, xA1, yA1, partIdx);
108 else
110 }
111
112 //check if the two luma locations belong to the same mostion estimation region
114 {
116
117 return xN >> plevel == xP >> plevel &&
118 yN >> plevel == yP >> plevel;
119 }
120
121 #define MATCH(x) (A.x == B.x)
122
123 // check if the mv's and refidx are the same between A and B
125 {
129
132
135
136 return 0;
137 }
138
140 {
141 int tx, scale_factor;
142
145 tx = (0x4000 + abs(td / 2)) / td;
146 scale_factor =
av_clip_c((tb * tx + 32) >> 6, -4096, 4095);
148 (scale_factor * src->
x < 0)) >> 8);
150 (scale_factor * src->
y < 0)) >> 8);
151 }
152
154 int colPic, int poc,
156 RefPicList *refPicList_col,
int listCol,
int refidxCol)
157 {
158 int cur_lt = refPicList[X].
isLongTerm[refIdxLx];
159 int col_lt = refPicList_col[listCol].
isLongTerm[refidxCol];
160 int col_poc_diff, cur_poc_diff;
161
162 if (cur_lt != col_lt) {
165 return 0;
166 }
167
168 col_poc_diff = colPic - refPicList_col[listCol].
list[refidxCol];
169 cur_poc_diff = poc - refPicList[X].
list[refIdxLx];
170
171 if (!col_poc_diff)
172 col_poc_diff = 1; // error resilience
173
174 if (cur_lt || col_poc_diff == cur_poc_diff) {
175 mvLXCol->
x = mvCol->
x;
176 mvLXCol->
y = mvCol->
y;
177 } else {
178 mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
179 }
180 return 1;
181 }
182
183 #define CHECK_MVSET(l) \
184 check_mvset(mvLXCol, temp_col.mv + l, \
185 colPic, s->poc, \
186 refPicList, X, refIdxLx, \
187 refPicList_col, L##l, temp_col.ref_idx[l])
188
189 // derive the motion vectors section 8.5.3.1.8
191 int refIdxLx,
Mv* mvLXCol,
int X,
193 {
195
199 return 0;
200 }
201
207 int check_diffpicount = 0;
208 int i = 0;
209 for (i = 0; i < refPicList[0].
nb_refs; i++) {
210 if (refPicList[0].list[i] > s->
poc)
211 check_diffpicount++;
212 }
213 for (i = 0; i < refPicList[1].
nb_refs; i++) {
214 if (refPicList[1].list[i] > s->
poc)
215 check_diffpicount++;
216 }
217 if (check_diffpicount == 0 && X == 0)
219 else if (check_diffpicount == 0 && X == 1)
221 else {
224 else
226 }
227 }
228
229 return 0;
230 }
231
232 #define TAB_MVF(x, y) \
233 tab_mvf[(y) * min_pu_width + x]
234
235 #define TAB_MVF_PU(v) \
236 TAB_MVF(x##v##_pu, y##v##_pu)
237
238 #define DERIVE_TEMPORAL_COLOCATED_MVS \
239 derive_temporal_colocated_mvs(s, temp_col, \
240 refIdxLx, mvLXCol, X, colPic, \
241 ff_hevc_get_ref_list(s, ref, x, y))
242
243 /*
244 * 8.5.3.1.7 temporal luma motion vector prediction
245 */
247 int nPbW, int nPbH, int refIdxLx,
249 {
253 int x_pu, y_pu;
255 int availableFlagLXCol = 0;
256 int colPic;
257
259
260 if (!ref)
261 return 0;
262
265
266 //bottom right collocated motion vector
267 x = x0 + nPbW;
268 y = y0 + nPbH;
269
272 if (tab_mvf &&
274 y < s->sps->height &&
275 x < s->sps->width) {
276 x = ((x >> 4) << 4);
277 y = ((y >> 4) << 4);
280 temp_col =
TAB_MVF(x_pu, y_pu);
282 }
283
284 // derive center collocated motion vector
285 if (tab_mvf && !availableFlagLXCol) {
286 x = x0 + (nPbW >> 1);
287 y = y0 + (nPbH >> 1);
288 x = ((x >> 4) << 4);
289 y = ((y >> 4) << 4);
292 temp_col =
TAB_MVF(x_pu, y_pu);
294 }
295 return availableFlagLXCol;
296 }
297
298 #define AVAILABLE(cand, v) \
299 (cand && !TAB_MVF_PU(v).is_intra)
300
301 #define PRED_BLOCK_AVAILABLE(v) \
302 check_prediction_block_available(s, log2_cb_size, \
303 x0, y0, nPbW, nPbH, \
304 x##v, y##v, part_idx)
305
306 #define COMPARE_MV_REFIDX(a, b) \
307 compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b))
308
309 /*
310 * 8.5.3.1.2 Derivation process for spatial merging candidates
311 */
313 int nPbW, int nPbH, int log2_cb_size,
314 int singleMCLFlag, int part_idx,
315 struct MvField mergecandlist[])
316 {
320
322
328
329 const int xA1 = x0 - 1;
330 const int yA1 = y0 + nPbH - 1;
333
334 const int xB1 = x0 + nPbW - 1;
335 const int yB1 = y0 - 1;
338
339 const int xB0 = x0 + nPbW;
340 const int yB0 = y0 - 1;
343
344 const int xA0 = x0 - 1;
345 const int yA0 = y0 + nPbH;
348
349 const int xB2 = x0 - 1;
350 const int yB2 = y0 - 1;
353
356 int check_MER = 1;
357 int check_MER_1 = 1;
358
359 int zero_idx = 0;
360
361 int nb_merge_cand = 0;
362 int nb_orig_merge_cand = 0;
363
364 int is_available_a0;
365 int is_available_a1;
366 int is_available_b0;
367 int is_available_b1;
368 int is_available_b2;
369 int check_B0;
370 int check_A0;
371
372 //first left spatial merge candidate
374
375 if (!singleMCLFlag && part_idx == 1 &&
380 is_available_a1 = 0;
381 }
382
383 if (is_available_a1)
385
386 // above spatial merge candidate
388
389 if (!singleMCLFlag && part_idx == 1 &&
394 is_available_b1 = 0;
395 }
396
397 if (is_available_a1 && is_available_b1)
399
400 if (is_available_b1 && check_MER)
402
403 // above right spatial merge candidate
404 check_MER = 1;
406
407 is_available_b0 = check_B0 &&
AVAILABLE(cand_up_right,
B0);
408
410 is_available_b0 = 0;
411
412 if (is_available_b1 && is_available_b0)
414
415 if (is_available_b0 && check_MER)
417
418 // left bottom spatial merge candidate
419 check_MER = 1;
421
422 is_available_a0 = check_A0 &&
AVAILABLE(cand_bottom_left, A0);
423
425 is_available_a0 = 0;
426
427 if (is_available_a1 && is_available_a0)
429
430 if (is_available_a0 && check_MER)
431 mergecandlist[nb_merge_cand++] =
TAB_MVF_PU(A0);
432
433 // above left spatial merge candidate
434 check_MER = 1;
435
437
439 is_available_b2 = 0;
440
441 if (is_available_a1 && is_available_b2)
443
444 if (is_available_b1 && is_available_b2)
446
447 if (is_available_b2 && check_MER && check_MER_1 && nb_merge_cand != 4)
449
450 // temporal motion vector candidate
452 nb_merge_cand < s->sh.max_num_merge_cand) {
453 Mv mv_l0_col, mv_l1_col;
455 0, &mv_l0_col, 0);
458 0, &mv_l1_col, 1) : 0;
459
460 if (available_l0 || available_l1) {
461 mergecandlist[nb_merge_cand].
is_intra = 0;
462 mergecandlist[nb_merge_cand].
pred_flag[0] = available_l0;
463 mergecandlist[nb_merge_cand].
pred_flag[1] = available_l1;
464 if (available_l0) {
465 mergecandlist[nb_merge_cand].
mv[0] = mv_l0_col;
466 mergecandlist[nb_merge_cand].
ref_idx[0] = 0;
467 }
468 if (available_l1) {
469 mergecandlist[nb_merge_cand].
mv[1] = mv_l1_col;
470 mergecandlist[nb_merge_cand].
ref_idx[1] = 0;
471 }
472 nb_merge_cand++;
473 }
474 }
475
476 nb_orig_merge_cand = nb_merge_cand;
477
478 // combined bi-predictive merge candidates (applies for B slices)
480 nb_orig_merge_cand < s->sh.max_num_merge_cand) {
481 int comb_idx = 0;
482
484 comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
487 MvField l0_cand = mergecandlist[l0_cand_idx];
488 MvField l1_cand = mergecandlist[l1_cand_idx];
489
493 l0_cand.
mv[0].
x != l1_cand.
mv[1].
x ||
494 l0_cand.
mv[0].
y != l1_cand.
mv[1].
y)) {
497 mergecandlist[nb_merge_cand].
pred_flag[0] = 1;
498 mergecandlist[nb_merge_cand].
pred_flag[1] = 1;
499 mergecandlist[nb_merge_cand].
mv[0].
x = l0_cand.
mv[0].
x;
500 mergecandlist[nb_merge_cand].
mv[0].
y = l0_cand.
mv[0].
y;
501 mergecandlist[nb_merge_cand].
mv[1].
x = l1_cand.
mv[1].
x;
502 mergecandlist[nb_merge_cand].
mv[1].
y = l1_cand.
mv[1].
y;
503 mergecandlist[nb_merge_cand].
is_intra = 0;
504 nb_merge_cand++;
505 }
506 }
507 }
508
509 // append Zero motion vector candidates
510 while (nb_merge_cand < s->sh.max_num_merge_cand) {
511 mergecandlist[nb_merge_cand].
pred_flag[0] = 1;
513 mergecandlist[nb_merge_cand].
mv[0].
x = 0;
514 mergecandlist[nb_merge_cand].
mv[0].
y = 0;
515 mergecandlist[nb_merge_cand].
mv[1].
x = 0;
516 mergecandlist[nb_merge_cand].
mv[1].
y = 0;
517 mergecandlist[nb_merge_cand].
is_intra = 0;
518 mergecandlist[nb_merge_cand].
ref_idx[0] = (zero_idx < nb_refs) ? zero_idx : 0;
519 mergecandlist[nb_merge_cand].
ref_idx[1] = (zero_idx < nb_refs) ? zero_idx : 0;
520
521 nb_merge_cand++;
522 zero_idx++;
523 }
524 }
525
526 /*
527 * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
528 */
530 int nPbH, int log2_cb_size, int part_idx,
532 {
533 int singleMCLFlag = 0;
534 int nCS = 1 << log2_cb_size;
535 struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } };
536 int nPbW2 = nPbW;
537 int nPbH2 = nPbH;
539
541 singleMCLFlag = 1;
544 nPbW = nCS;
545 nPbH = nCS;
546 part_idx = 0;
547 }
548
551 singleMCLFlag, part_idx, mergecand_list);
552
553 if (mergecand_list[merge_idx].
pred_flag[0] == 1 &&
554 mergecand_list[merge_idx].
pred_flag[1] == 1 &&
555 (nPbW2 + nPbH2) == 12) {
556 mergecand_list[merge_idx].
ref_idx[1] = -1;
557 mergecand_list[merge_idx].
pred_flag[1] = 0;
558 }
559
560 *mv = mergecand_list[merge_idx];
561 }
562
564 int min_pu_width,
int x,
int y,
565 int elist,
int ref_idx_curr,
int ref_idx)
566 {
569 int ref_pic_elist = refPicList[elist].
list[
TAB_MVF(x, y).ref_idx[elist]];
570 int ref_pic_curr = refPicList[ref_idx_curr].
list[
ref_idx];
571
572 if (ref_pic_elist != ref_pic_curr)
574 }
575
578 {
581
583
585 refPicList[pred_flag_index].list[
TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
586 *mv =
TAB_MVF(x, y).mv[pred_flag_index];
587 return 1;
588 }
589 return 0;
590 }
591
592
595 {
598
601
602 int colIsLongTerm =
603 refPicList[pred_flag_index].
isLongTerm[(
TAB_MVF(x, y).ref_idx[pred_flag_index])];
604
605 if (
TAB_MVF(x, y).pred_flag[pred_flag_index] && colIsLongTerm == currIsLongTerm) {
606 *mv =
TAB_MVF(x, y).mv[pred_flag_index];
607 if (!currIsLongTerm)
608 dist_scale(s, mv, min_pu_width, x, y, pred_flag_index, ref_idx_curr, ref_idx);
609 return 1;
610 }
611 return 0;
612 }
613
614 #define MP_MX(v, pred, mx) \
615 mv_mp_mode_mx(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx)
616
617 #define MP_MX_LT(v, pred, mx) \
618 mv_mp_mode_mx_lt(s, x##v##_pu, y##v##_pu, pred, &mx, ref_idx_curr, ref_idx)
619
621 int nPbH, int log2_cb_size, int part_idx,
623 int mvp_lx_flag, int LX)
624 {
627 int isScaledFlag_L0 = 0;
628 int availableFlagLXA0 = 0;
629 int availableFlagLXB0 = 0;
630 int numMVPCandLX = 0;
632
633 int xA0, yA0;
634 int xA0_pu, yA0_pu;
635 int is_available_a0;
636
637 int xA1, yA1;
638 int xA1_pu, yA1_pu;
639 int is_available_a1;
640
641 int xB0, yB0;
642 int xB0_pu, yB0_pu;
643 int is_available_b0;
644
645 int xB1, yB1;
646 int xB1_pu = 0, yB1_pu = 0;
647 int is_available_b1 = 0;
648
649 int xB2, yB2;
650 int xB2_pu = 0, yB2_pu = 0;
651 int is_available_b2 = 0;
652 Mv mvpcand_list[2] = { { 0 } };
655 int ref_idx_curr = 0;
657 int pred_flag_index_l0;
658 int pred_flag_index_l1;
661
664 int cand_up_left =
666 int cand_up_right =
669 : cand_up;
670 int cand_bottom_left = (y0 + nPbH >= lc->
end_of_tiles_y) ? 0 : cand_left;
671
672 ref_idx_curr = LX;
674 pred_flag_index_l0 = LX;
675 pred_flag_index_l1 = !LX;
676
677 // left bottom spatial candidate
678 xA0 = x0 - 1;
679 yA0 = y0 + nPbH;
682
684
685 //left spatial merge candidate
686 xA1 = x0 - 1;
687 yA1 = y0 + nPbH - 1;
690
692 if (is_available_a0 || is_available_a1) {
693 isScaledFlag_L0 = 1;
694 }
695
696 if (is_available_a0) {
697 availableFlagLXA0 =
MP_MX(A0, pred_flag_index_l0, mxA);
698 if (!availableFlagLXA0)
699 availableFlagLXA0 =
MP_MX(A0, pred_flag_index_l1, mxA);
700 }
701
702 if (is_available_a1 && !availableFlagLXA0) {
703 availableFlagLXA0 =
MP_MX(
A1, pred_flag_index_l0, mxA);
704 if (!availableFlagLXA0)
705 availableFlagLXA0 =
MP_MX(
A1, pred_flag_index_l1, mxA);
706 }
707
708 if (is_available_a0 && !availableFlagLXA0) {
709 availableFlagLXA0 =
MP_MX_LT(A0, pred_flag_index_l0, mxA);
710 if (!availableFlagLXA0)
711 availableFlagLXA0 =
MP_MX_LT(A0, pred_flag_index_l1, mxA);
712 }
713
714 if (is_available_a1 && !availableFlagLXA0) {
715 availableFlagLXA0 =
MP_MX_LT(
A1, pred_flag_index_l0, mxA);
716 if (!availableFlagLXA0)
717 availableFlagLXA0 =
MP_MX_LT(
A1, pred_flag_index_l1, mxA);
718 }
719
720 // B candidates
721 // above right spatial merge candidate
722 xB0 = x0 + nPbW;
723 yB0 = y0 - 1;
726
728
729 if (is_available_b0) {
730 availableFlagLXB0 =
MP_MX(
B0, pred_flag_index_l0, mxB);
731 if (!availableFlagLXB0)
732 availableFlagLXB0 =
MP_MX(
B0, pred_flag_index_l1, mxB);
733 }
734
735 if (!availableFlagLXB0) {
736 // above spatial merge candidate
737 xB1 = x0 + nPbW - 1;
738 yB1 = y0 - 1;
741
743
744 if (is_available_b1) {
745 availableFlagLXB0 =
MP_MX(
B1, pred_flag_index_l0, mxB);
746 if (!availableFlagLXB0)
747 availableFlagLXB0 =
MP_MX(
B1, pred_flag_index_l1, mxB);
748 }
749 }
750
751 if (!availableFlagLXB0) {
752 // above left spatial merge candidate
753 xB2 = x0 - 1;
754 yB2 = y0 - 1;
758
759 if (is_available_b2) {
760 availableFlagLXB0 =
MP_MX(
B2, pred_flag_index_l0, mxB);
761 if (!availableFlagLXB0)
762 availableFlagLXB0 =
MP_MX(
B2, pred_flag_index_l1, mxB);
763 }
764 }
765
766 if (isScaledFlag_L0 == 0) {
767 if (availableFlagLXB0) {
768 availableFlagLXA0 = 1;
769 mxA = mxB;
770 }
771 availableFlagLXB0 = 0;
772
773 // XB0 and L1
774 if (is_available_b0) {
775 availableFlagLXB0 =
MP_MX_LT(
B0, pred_flag_index_l0, mxB);
776 if (!availableFlagLXB0)
777 availableFlagLXB0 =
MP_MX_LT(
B0, pred_flag_index_l1, mxB);
778 }
779
780 if (is_available_b1 && !availableFlagLXB0) {
781 availableFlagLXB0 =
MP_MX_LT(
B1, pred_flag_index_l0, mxB);
782 if (!availableFlagLXB0)
783 availableFlagLXB0 =
MP_MX_LT(
B1, pred_flag_index_l1, mxB);
784 }
785
786 if (is_available_b2 && !availableFlagLXB0) {
787 availableFlagLXB0 =
MP_MX_LT(
B2, pred_flag_index_l0, mxB);
788 if (!availableFlagLXB0)
789 availableFlagLXB0 =
MP_MX_LT(
B2, pred_flag_index_l1, mxB);
790 }
791 }
792
793 if (availableFlagLXA0)
794 mvpcand_list[numMVPCandLX++] = mxA;
795
796 if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.
x != mxB.
x || mxA.
y != mxB.
y))
797 mvpcand_list[numMVPCandLX++] = mxB;
798
799 //temporal motion vector prediction candidate
800 if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag) {
803 nPbH, ref_idx, &mv_col, LX);
804 if (available_col)
805 mvpcand_list[numMVPCandLX++] = mv_col;
806 }
807
808 // insert zero motion vectors when the number of available candidates are less than 2
809 while (numMVPCandLX < 2)
810 mvpcand_list[numMVPCandLX++] = (
Mv){ 0, 0 };
811
812 mv->
mv[LX].
x = mvpcand_list[mvp_lx_flag].
x;
813 mv->
mv[LX].
y = mvpcand_list[mvp_lx_flag].
y;
814 }