FFmpeg: libavcodec/h264.h Source File

FFmpeg
h264.h
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30 
31 #include "libavutil/intreadwrite.h"
32 #include "cabac.h"
33 #include "error_resilience.h"
34 #include "get_bits.h"
35 #include "mpegvideo.h"
36 #include "h264chroma.h"
37 #include "h264dsp.h"
38 #include "h264pred.h"
39 #include "h264qpel.h"
40 #include "rectangle.h"
41 
42  #define MAX_SPS_COUNT 32
43  #define MAX_PPS_COUNT 256
44 
45  #define MAX_MMCO_COUNT 66
46 
47  #define MAX_DELAYED_PIC_COUNT 16
48 
49  #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
50 
51 /* Compiling in interlaced support reduces the speed
52  * of progressive decoding by about 2%. */
53  #define ALLOW_INTERLACE
54 
55  #define FMO 0
56 
57 /**
58  * The maximum number of slices supported by the decoder.
59  * must be a power of 2
60  */
61  #define MAX_SLICES 16
62 
63 #ifdef ALLOW_INTERLACE
64  #define MB_MBAFF(h) h->mb_mbaff
65  #define MB_FIELD(h) h->mb_field_decoding_flag
66  #define FRAME_MBAFF(h) h->mb_aff_frame
67  #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
68  #define LEFT_MBS 2
69  #define LTOP 0
70  #define LBOT 1
71  #define LEFT(i) (i)
72 #else
73 #define MB_MBAFF(h) 0
74 #define MB_FIELD(h) 0
75 #define FRAME_MBAFF(h) 0
76 #define FIELD_PICTURE(h) 0
77 #undef IS_INTERLACED
78 #define IS_INTERLACED(mb_type) 0
79 #define LEFT_MBS 1
80 #define LTOP 0
81 #define LBOT 0
82 #define LEFT(i) 0
83 #endif
84  #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
85 
86 #ifndef CABAC
87  #define CABAC(h) h->pps.cabac
88 #endif
89 
90  #define CHROMA(h) (h->sps.chroma_format_idc)
91  #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
92  #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
93 
94  #define EXTENDED_SAR 255
95 
96  #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
97  #define MB_TYPE_8x8DCT 0x01000000
98  #define IS_REF0(a) ((a) & MB_TYPE_REF0)
99  #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
100 
101  #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
102 
103 /* NAL unit types */
104 enum {
105   NAL_SLICE = 1,
106   NAL_DPA,
107   NAL_DPB,
108   NAL_DPC,
109   NAL_IDR_SLICE,
110   NAL_SEI,
111   NAL_SPS,
112   NAL_PPS,
113   NAL_AUD,
114   NAL_END_SEQUENCE,
115   NAL_END_STREAM,
116   NAL_FILLER_DATA,
117   NAL_SPS_EXT,
118   NAL_AUXILIARY_SLICE = 19,
119   NAL_FF_IGNORE = 0xff0f001,
120 };
121 
122 /**
123  * SEI message types
124  */
125  typedef enum {
126   SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
127   SEI_TYPE_PIC_TIMING = 1, ///< picture timing
128   SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
129   SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
130   SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
131   SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
132 } SEI_Type;
133 
134 /**
135  * pic_struct in picture timing SEI message
136  */
137  typedef enum {
138   SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
139   SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
140   SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
141   SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
142   SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
143   SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
144   SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
145   SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
146   SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
147 } SEI_PicStructType;
148 
149 /**
150  * frame_packing_arrangement types
151  */
152  typedef enum {
153   SEI_FPA_TYPE_CHECKERBOARD = 0,
154   SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1,
155   SEI_FPA_TYPE_INTERLEAVE_ROW = 2,
156   SEI_FPA_TYPE_SIDE_BY_SIDE = 3,
157   SEI_FPA_TYPE_TOP_BOTTOM = 4,
158   SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
159   SEI_FPA_TYPE_2D = 6,
160 } SEI_FpaType;
161 
162 /**
163  * Sequence parameter set
164  */
165  typedef struct SPS {
166   int profile_idc;
167   int level_idc;
168   int chroma_format_idc;
169   int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
170   int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
171   int poc_type; ///< pic_order_cnt_type
172   int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
173   int delta_pic_order_always_zero_flag;
174   int offset_for_non_ref_pic;
175   int offset_for_top_to_bottom_field;
176   int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
177   int ref_frame_count; ///< num_ref_frames
178   int gaps_in_frame_num_allowed_flag;
179   int mb_width; ///< pic_width_in_mbs_minus1 + 1
180   int mb_height; ///< pic_height_in_map_units_minus1 + 1
181   int frame_mbs_only_flag;
182   int mb_aff; ///< mb_adaptive_frame_field_flag
183   int direct_8x8_inference_flag;
184   int crop; ///< frame_cropping_flag
185 
186  /* those 4 are already in luma samples */
187   unsigned int crop_left; ///< frame_cropping_rect_left_offset
188   unsigned int crop_right; ///< frame_cropping_rect_right_offset
189   unsigned int crop_top; ///< frame_cropping_rect_top_offset
190   unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
191   int vui_parameters_present_flag;
192   AVRational sar;
193   int video_signal_type_present_flag;
194   int full_range;
195   int colour_description_present_flag;
196   enum AVColorPrimaries color_primaries;
197   enum AVColorTransferCharacteristic color_trc;
198   enum AVColorSpace colorspace;
199   int timing_info_present_flag;
200   uint32_t num_units_in_tick;
201   uint32_t time_scale;
202   int fixed_frame_rate_flag;
203   short offset_for_ref_frame[256]; // FIXME dyn aloc?
204   int bitstream_restriction_flag;
205   int num_reorder_frames;
206   int scaling_matrix_present;
207   uint8_t scaling_matrix4[6][16];
208   uint8_t scaling_matrix8[6][64];
209   int nal_hrd_parameters_present_flag;
210   int vcl_hrd_parameters_present_flag;
211   int pic_struct_present_flag;
212   int time_offset_length;
213   int cpb_cnt; ///< See H.264 E.1.2
214   int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
215   int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
216   int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
217   int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
218   int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
219   int residual_color_transform_flag; ///< residual_colour_transform_flag
220   int constraint_set_flags; ///< constraint_set[0-3]_flag
221   int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
222 } SPS;
223 
224 /**
225  * Picture parameter set
226  */
227  typedef struct PPS {
228   unsigned int sps_id;
229   int cabac; ///< entropy_coding_mode_flag
230   int pic_order_present; ///< pic_order_present_flag
231   int slice_group_count; ///< num_slice_groups_minus1 + 1
232   int mb_slice_group_map_type;
233   unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
234   int weighted_pred; ///< weighted_pred_flag
235   int weighted_bipred_idc;
236   int init_qp; ///< pic_init_qp_minus26 + 26
237   int init_qs; ///< pic_init_qs_minus26 + 26
238   int chroma_qp_index_offset[2];
239   int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
240   int constrained_intra_pred; ///< constrained_intra_pred_flag
241   int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
242   int transform_8x8_mode; ///< transform_8x8_mode_flag
243   uint8_t scaling_matrix4[6][16];
244   uint8_t scaling_matrix8[6][64];
245   uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
246   int chroma_qp_diff;
247 } PPS;
248 
249 /**
250  * Frame Packing Arrangement Type
251  */
252  typedef struct FPA {
253   int frame_packing_arrangement_id;
254   int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
255   SEI_FpaType frame_packing_arrangement_type;
256   int frame_packing_arrangement_repetition_period;
257   int content_interpretation_type;
258   int quincunx_sampling_flag;
259 } FPA;
260 
261 /**
262  * Memory management control operation opcode.
263  */
264  typedef enum MMCOOpcode {
265   MMCO_END = 0,
266   MMCO_SHORT2UNUSED,
267   MMCO_LONG2UNUSED,
268   MMCO_SHORT2LONG,
269   MMCO_SET_MAX_LONG,
270   MMCO_RESET,
271   MMCO_LONG,
272 } MMCOOpcode;
273 
274 /**
275  * Memory management control operation.
276  */
277  typedef struct MMCO {
278   MMCOOpcode opcode;
279   int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
280   int long_arg; ///< index, pic_num, or num long refs depending on opcode
281 } MMCO;
282 
283 /**
284  * H264Context
285  */
286  typedef struct H264Context {
287   AVCodecContext *avctx;
288   VideoDSPContext vdsp;
289   H264DSPContext h264dsp;
290   H264ChromaContext h264chroma;
291   H264QpelContext h264qpel;
292   MotionEstContext me;
293   ParseContext parse_context;
294   GetBitContext gb;
295   DSPContext dsp;
296   ERContext er;
297 
298   Picture *DPB;
299   Picture *cur_pic_ptr;
300   Picture cur_pic;
301 
302   int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
303   int chroma_qp[2]; // QPc
304 
305   int qp_thresh; ///< QP threshold to skip loopfilter
306 
307  /* coded dimensions -- 16 * mb w/h */
308   int width, height;
309   ptrdiff_t linesize, uvlinesize;
310   int chroma_x_shift, chroma_y_shift;
311 
312   int qscale;
313   int droppable;
314   int data_partitioning;
315   int coded_picture_number;
316   int low_delay;
317 
318   int context_initialized;
319   int flags;
320   int workaround_bugs;
321 
322   int prev_mb_skipped;
323   int next_mb_skipped;
324 
325  // prediction stuff
326   int chroma_pred_mode;
327   int intra16x16_pred_mode;
328 
329   int topleft_mb_xy;
330   int top_mb_xy;
331   int topright_mb_xy;
332   int left_mb_xy[LEFT_MBS];
333 
334   int topleft_type;
335   int top_type;
336   int topright_type;
337   int left_type[LEFT_MBS];
338 
339   const uint8_t *left_block;
340   int topleft_partition;
341 
342   int8_t intra4x4_pred_mode_cache[5 * 8];
343   int8_t(*intra4x4_pred_mode);
344   H264PredContext hpc;
345   unsigned int topleft_samples_available;
346   unsigned int top_samples_available;
347   unsigned int topright_samples_available;
348   unsigned int left_samples_available;
349   uint8_t (*top_borders[2])[(16 * 3) * 2];
350 
351  /**
352  * non zero coeff count cache.
353  * is 64 if not available.
354  */
355   DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
356 
357   uint8_t (*non_zero_count)[48];
358 
359  /**
360  * Motion vector cache.
361  */
362   DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
363   DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
364  #define LIST_NOT_USED -1 // FIXME rename?
365  #define PART_NOT_AVAILABLE -2
366 
367  /**
368  * number of neighbors (top and/or left) that used 8x8 dct
369  */
370   int neighbor_transform_size;
371 
372  /**
373  * block_offset[ 0..23] for frame macroblocks
374  * block_offset[24..47] for field macroblocks
375  */
376   int block_offset[2 * (16 * 3)];
377 
378   uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
379   uint32_t *mb2br_xy;
380   int b_stride; // FIXME use s->b4_stride
381 
382   ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
383   ptrdiff_t mb_uvlinesize;
384 
385   unsigned current_sps_id; ///< id of the current SPS
386   SPS sps; ///< current sps
387 
388  /**
389  * current pps
390  */
391   PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
392 
393   uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
394   uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
395   uint32_t(*dequant4_coeff[6])[16];
396   uint32_t(*dequant8_coeff[6])[64];
397 
398   int slice_num;
399   uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
400   int slice_type;
401   int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
402   int slice_type_fixed;
403 
404  // interlacing specific flags
405   int mb_aff_frame;
406   int mb_field_decoding_flag;
407   int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
408   int picture_structure;
409   int first_field;
410 
411   DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
412 
413  // Weighted pred stuff
414   int use_weight;
415   int use_weight_chroma;
416   int luma_log2_weight_denom;
417   int chroma_log2_weight_denom;
418  // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
419   int luma_weight[48][2][2];
420   int chroma_weight[48][2][2][2];
421   int implicit_weight[48][48][2];
422 
423   int direct_spatial_mv_pred;
424   int col_parity;
425   int col_fieldoff;
426   int dist_scale_factor[32];
427   int dist_scale_factor_field[2][32];
428   int map_col_to_list0[2][16 + 32];
429   int map_col_to_list0_field[2][2][16 + 32];
430 
431  /**
432  * num_ref_idx_l0/1_active_minus1 + 1
433  */
434   unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
435   unsigned int list_count;
436   uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
437   Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
438  * Reordered version of default_ref_list
439  * according to picture reordering in slice header */
440   int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441 
442  // data partitioning
443   GetBitContext intra_gb;
444   GetBitContext inter_gb;
445   GetBitContext *intra_gb_ptr;
446   GetBitContext *inter_gb_ptr;
447 
448   const uint8_t *intra_pcm_ptr;
449   DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
450   DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
451   int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
452 
453  /**
454  * Cabac
455  */
456   CABACContext cabac;
457   uint8_t cabac_state[1024];
458 
459  /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
460   uint16_t *cbp_table;
461   int cbp;
462   int top_cbp;
463   int left_cbp;
464  /* chroma_pred_mode for i4x4 or i16x16, else 0 */
465   uint8_t *chroma_pred_mode_table;
466   int last_qscale_diff;
467   uint8_t (*mvd_table[2])[2];
468   DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
469   uint8_t *direct_table;
470   uint8_t direct_cache[5 * 8];
471 
472   uint8_t zigzag_scan[16];
473   uint8_t zigzag_scan8x8[64];
474   uint8_t zigzag_scan8x8_cavlc[64];
475   uint8_t field_scan[16];
476   uint8_t field_scan8x8[64];
477   uint8_t field_scan8x8_cavlc[64];
478   uint8_t zigzag_scan_q0[16];
479   uint8_t zigzag_scan8x8_q0[64];
480   uint8_t zigzag_scan8x8_cavlc_q0[64];
481   uint8_t field_scan_q0[16];
482   uint8_t field_scan8x8_q0[64];
483   uint8_t field_scan8x8_cavlc_q0[64];
484 
485   int x264_build;
486 
487   int mb_x, mb_y;
488   int resync_mb_x;
489   int resync_mb_y;
490   int mb_skip_run;
491   int mb_height, mb_width;
492   int mb_stride;
493   int mb_num;
494   int mb_xy;
495 
496   int is_complex;
497 
498  // deblock
499   int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
500   int slice_alpha_c0_offset;
501   int slice_beta_offset;
502 
503  // =============================================================
504  // Things below are not used in the MB or more inner code
505 
506   int nal_ref_idc;
507   int nal_unit_type;
508   uint8_t *rbsp_buffer[2];
509   unsigned int rbsp_buffer_size[2];
510 
511  /**
512  * Used to parse AVC variant of h264
513  */
514   int is_avc; ///< this flag is != 0 if codec is avc1
515   int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
516   int got_first; ///< this flag is != 0 if we've parsed a frame
517 
518   int bit_depth_luma; ///< luma bit depth from sps to detect changes
519   int chroma_format_idc; ///< chroma format from sps to detect changes
520 
521   SPS *sps_buffers[MAX_SPS_COUNT];
522   PPS *pps_buffers[MAX_PPS_COUNT];
523 
524   int dequant_coeff_pps; ///< reinit tables when pps changes
525 
526   uint16_t *slice_table_base;
527 
528  // POC stuff
529   int poc_lsb;
530   int poc_msb;
531   int delta_poc_bottom;
532   int delta_poc[2];
533   int frame_num;
534   int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
535   int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
536   int frame_num_offset; ///< for POC type 2
537   int prev_frame_num_offset; ///< for POC type 2
538   int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
539 
540  /**
541  * frame_num for frames or 2 * frame_num + 1 for field pics.
542  */
543   int curr_pic_num;
544 
545  /**
546  * max_frame_num or 2 * max_frame_num for field pics.
547  */
548   int max_pic_num;
549 
550   int redundant_pic_count;
551 
552   Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
553   Picture *short_ref[32];
554   Picture *long_ref[32];
555   Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
556   int last_pocs[MAX_DELAYED_PIC_COUNT];
557   Picture *next_output_pic;
558   int outputed_poc;
559   int next_outputed_poc;
560 
561  /**
562  * memory management control operations buffer.
563  */
564   MMCO mmco[MAX_MMCO_COUNT];
565   int mmco_index;
566   int mmco_reset;
567 
568   int long_ref_count; ///< number of actual long term references
569   int short_ref_count; ///< number of actual short term references
570 
571   int cabac_init_idc;
572 
573  /**
574  * @name Members for slice based multithreading
575  * @{
576  */
577   struct H264Context *thread_context[MAX_THREADS];
578 
579  /**
580  * current slice number, used to initialize slice_num of each thread/context
581  */
582   int current_slice;
583 
584  /**
585  * Max number of threads / contexts.
586  * This is equal to AVCodecContext.thread_count unless
587  * multithreaded decoding is impossible, in which case it is
588  * reduced to 1.
589  */
590   int max_contexts;
591 
592   int slice_context_count;
593 
594  /**
595  * 1 if the single thread fallback warning has already been
596  * displayed, 0 otherwise.
597  */
598   int single_decode_warning;
599 
600   enum AVPictureType pict_type;
601 
602   int last_slice_type;
603   unsigned int last_ref_count[2];
604  /** @} */
605 
606  /**
607  * pic_struct in picture timing SEI message
608  */
609   SEI_PicStructType sei_pic_struct;
610 
611  /**
612  * Complement sei_pic_struct
613  * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
614  * However, soft telecined frames may have these values.
615  * This is used in an attempt to flag soft telecine progressive.
616  */
617   int prev_interlaced_frame;
618 
619  /**
620  * Bit set of clock types for fields/frames in picture timing SEI message.
621  * For each found ct_type, appropriate bit is set (e.g., bit 1 for
622  * interlaced).
623  */
624   int sei_ct_type;
625 
626  /**
627  * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
628  */
629   int sei_dpb_output_delay;
630 
631  /**
632  * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
633  */
634   int sei_cpb_removal_delay;
635 
636  /**
637  * recovery_frame_cnt from SEI message
638  *
639  * Set to -1 if no recovery point SEI message found or to number of frames
640  * before playback synchronizes. Frames having recovery point are key
641  * frames.
642  */
643   int sei_recovery_frame_cnt;
644  /**
645  * recovery_frame is the frame_num at which the next frame should
646  * be fully constructed.
647  *
648  * Set to -1 when not expecting a recovery point.
649  */
650   int recovery_frame;
651 
652  /**
653  * Are the SEI recovery points looking valid.
654  */
655   int valid_recovery_point;
656 
657   FPA sei_fpa;
658 
659   int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
660   int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
661 
662  // Timestamp stuff
663   int sei_buffering_period_present; ///< Buffering period SEI flag
664   int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
665 
666   int cur_chroma_format_idc;
667   uint8_t *bipred_scratchpad;
668 
669   int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
670 
671   int sync; ///< did we had a keyframe or recovery point
672 
673   uint8_t parse_history[4];
674   int parse_history_count;
675   int parse_last_mb;
676   uint8_t *edge_emu_buffer;
677   int16_t *dc_val_base;
678 
679   uint8_t *visualization_buffer[3]; ///< temporary buffer vor MV visualization
680 
681   AVBufferPool *qscale_table_pool;
682   AVBufferPool *mb_type_pool;
683   AVBufferPool *motion_val_pool;
684   AVBufferPool *ref_index_pool;
685 } H264Context;
686 
687 extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
688 extern const uint16_t ff_h264_mb_sizes[4];
689 
690 /**
691  * Decode SEI
692  */
693 int ff_h264_decode_sei(H264Context *h);
694 
695 /**
696  * Decode SPS
697  */
698 int ff_h264_decode_seq_parameter_set(H264Context *h);
699 
700 /**
701  * compute profile from sps
702  */
703 int ff_h264_get_profile(SPS *sps);
704 
705 /**
706  * Decode PPS
707  */
708 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
709 
710 /**
711  * Decode a network abstraction layer unit.
712  * @param consumed is the number of bytes used as input
713  * @param length is the length of the array
714  * @param dst_length is the number of decoded bytes FIXME here
715  * or a decode rbsp tailing?
716  * @return decoded bytes, might be src+1 if no escapes
717  */
718 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
719  int *dst_length, int *consumed, int length);
720 
721 /**
722  * Free any data that may have been allocated in the H264 context
723  * like SPS, PPS etc.
724  */
725 void ff_h264_free_context(H264Context *h);
726 
727 /**
728  * Reconstruct bitstream slice_type.
729  */
730 int ff_h264_get_slice_type(const H264Context *h);
731 
732 /**
733  * Allocate tables.
734  * needs width/height
735  */
736 int ff_h264_alloc_tables(H264Context *h);
737 
738 /**
739  * Fill the default_ref_list.
740  */
741 int ff_h264_fill_default_ref_list(H264Context *h);
742 
743 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
744 void ff_h264_fill_mbaff_ref_list(H264Context *h);
745 void ff_h264_remove_all_refs(H264Context *h);
746 
747 /**
748  * Execute the reference picture marking (memory management control operations).
749  */
750 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
751 
752 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
753  int first_slice);
754 
755 int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
756 
757 /**
758  * Check if the top & left blocks are available if needed & change the
759  * dc mode so it only uses the available blocks.
760  */
761 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
762 
763 /**
764  * Check if the top & left blocks are available if needed & change the
765  * dc mode so it only uses the available blocks.
766  */
767 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
768 
769 void ff_h264_hl_decode_mb(H264Context *h);
770 int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
771 int ff_h264_decode_init(AVCodecContext *avctx);
772 void ff_h264_decode_init_vlc(void);
773 
774 /**
775  * Decode a macroblock
776  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
777  */
778 int ff_h264_decode_mb_cavlc(H264Context *h);
779 
780 /**
781  * Decode a CABAC coded macroblock
782  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
783  */
784 int ff_h264_decode_mb_cabac(H264Context *h);
785 
786 void ff_h264_init_cabac_states(H264Context *h);
787 
788 void ff_h264_direct_dist_scale_factor(H264Context *const h);
789 void ff_h264_direct_ref_list_init(H264Context *const h);
790 void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
791 
792 void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
793  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
794  unsigned int linesize, unsigned int uvlinesize);
795 void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
796  uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
797  unsigned int linesize, unsigned int uvlinesize);
798 
799 /**
800  * Reset SEI values at the beginning of the frame.
801  *
802  * @param h H.264 context.
803  */
804 void ff_h264_reset_sei(H264Context *h);
805 
806 /**
807  * Get stereo_mode string from the h264 frame_packing_arrangement
808  * @param h H.264 context.
809  */
810 const char* ff_h264_sei_stereo_mode(H264Context *h);
811 
812 /*
813  * o-o o-o
814  * / / /
815  * o-o o-o
816  * ,---'
817  * o-o o-o
818  * / / /
819  * o-o o-o
820  */
821 
822 /* Scan8 organization:
823  * 0 1 2 3 4 5 6 7
824  * 0 DY y y y y y
825  * 1 y Y Y Y Y
826  * 2 y Y Y Y Y
827  * 3 y Y Y Y Y
828  * 4 y Y Y Y Y
829  * 5 DU u u u u u
830  * 6 u U U U U
831  * 7 u U U U U
832  * 8 u U U U U
833  * 9 u U U U U
834  * 10 DV v v v v v
835  * 11 v V V V V
836  * 12 v V V V V
837  * 13 v V V V V
838  * 14 v V V V V
839  * DY/DU/DV are for luma/chroma DC.
840  */
841 
842  #define LUMA_DC_BLOCK_INDEX 48
843  #define CHROMA_DC_BLOCK_INDEX 49
844 
845 // This table must be here because scan8[constant] must be known at compiletime
846  static const uint8_t scan8[16 * 3 + 3] = {
847  4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
848  6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
849  4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
850  6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
851  4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
852  6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
853  4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
854  6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
855  4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
856  6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
857  4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
858  6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
859  0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
860 };
861 
862  static av_always_inline uint32_t pack16to32(int a, int b)
863 {
864 #if HAVE_BIGENDIAN
865  return (b & 0xFFFF) + (a << 16);
866 #else
867  return (a & 0xFFFF) + (b << 16);
868 #endif
869 }
870 
871  static av_always_inline uint16_t pack8to16(int a, int b)
872 {
873 #if HAVE_BIGENDIAN
874  return (b & 0xFF) + (a << 8);
875 #else
876  return (a & 0xFF) + (b << 8);
877 #endif
878 }
879 
880 /**
881  * Get the chroma qp.
882  */
883  static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
884 {
885  return h->pps.chroma_qp_table[t][qscale];
886 }
887 
888 /**
889  * Get the predicted intra4x4 prediction mode.
890  */
891  static av_always_inline int pred_intra_mode(H264Context *h, int n)
892 {
893  const int index8 = scan8[n];
894  const int left = h->intra4x4_pred_mode_cache[index8 - 1];
895  const int top = h->intra4x4_pred_mode_cache[index8 - 8];
896  const int min = FFMIN(left, top);
897 
898  tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
899 
900  if (min < 0)
901  return DC_PRED;
902  else
903  return min;
904 }
905 
906  static av_always_inline void write_back_intra_pred_mode(H264Context *h)
907 {
908  int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
909  int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
910 
911  AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
912  i4x4[4] = i4x4_cache[7 + 8 * 3];
913  i4x4[5] = i4x4_cache[7 + 8 * 2];
914  i4x4[6] = i4x4_cache[7 + 8 * 1];
915 }
916 
917  static av_always_inline void write_back_non_zero_count(H264Context *h)
918 {
919  const int mb_xy = h->mb_xy;
920  uint8_t *nnz = h->non_zero_count[mb_xy];
921  uint8_t *nnz_cache = h->non_zero_count_cache;
922 
923  AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
924  AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
925  AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
926  AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
927  AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
928  AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
929  AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
930  AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
931 
932  if (!h->chroma_y_shift) {
933  AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
934  AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
935  AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
936  AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
937  }
938 }
939 
940  static av_always_inline void write_back_motion_list(H264Context *h,
941  int b_stride,
942  int b_xy, int b8_xy,
943  int mb_type, int list)
944 {
945  int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
946  int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
947  AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
948  AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
949  AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
950  AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
951  if (CABAC(h)) {
952  uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
953  : h->mb2br_xy[h->mb_xy]];
954  uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
955  if (IS_SKIP(mb_type)) {
956  AV_ZERO128(mvd_dst);
957  } else {
958  AV_COPY64(mvd_dst, mvd_src + 8 * 3);
959  AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
960  AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
961  AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
962  }
963  }
964 
965  {
966  int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
967  int8_t *ref_cache = h->ref_cache[list];
968  ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
969  ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
970  ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
971  ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
972  }
973 }
974 
975  static av_always_inline void write_back_motion(H264Context *h, int mb_type)
976 {
977  const int b_stride = h->b_stride;
978  const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
979  const int b8_xy = 4 * h->mb_xy;
980 
981  if (USES_LIST(mb_type, 0)) {
982  write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
983  } else {
984  fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
985  2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
986  }
987  if (USES_LIST(mb_type, 1))
988  write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
989 
990  if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
991  if (IS_8X8(mb_type)) {
992  uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
993  direct_table[1] = h->sub_mb_type[1] >> 1;
994  direct_table[2] = h->sub_mb_type[2] >> 1;
995  direct_table[3] = h->sub_mb_type[3] >> 1;
996  }
997  }
998 }
999 
1000  static av_always_inline int get_dct8x8_allowed(H264Context *h)
1001 {
1002  if (h->sps.direct_8x8_inference_flag)
1003  return !(AV_RN64A(h->sub_mb_type) &
1004  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
1005  0x0001000100010001ULL));
1006  else
1007  return !(AV_RN64A(h->sub_mb_type) &
1008  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
1009  0x0001000100010001ULL));
1010 }
1011 
1012 void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
1013 int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
1014 int ff_pred_weight_table(H264Context *h);
1015 int ff_set_ref_count(H264Context *h);
1016 
1017 #endif /* AVCODEC_H264_H */

Generated on Sat Jan 25 2014 19:51:48 for FFmpeg by   doxygen 1.8.2

AltStyle によって変換されたページ (->オリジナル) /