1 /*
2 * RV40 decoder
3 * Copyright (c) 2007 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * RV40 decoder
25 */
26
28
33
37
41
43 0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
44 7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
45 };
46
47 /**
48 * Initialize all tables.
49 */
51 {
52 int i;
55 static VLC_TYPE aic_mode2_table[11814][2];
58
59 aic_top_vlc.
table = aic_table;
65 // Every tenth VLC table is empty
66 if((i % 10) == 9) continue;
72 }
79 }
87 }
95 }
96 }
97
98 /**
99 * Get stored dimension from bitstream.
100 *
101 * If the width/height is the standard one then it's coded as a 3-bit index.
102 * Otherwise it is coded as escaped 8-bit portions.
103 */
105 {
108 if(val < 0)
110 if(!val){
111 do{
113 val += t << 2;
114 }while(t == 0xFF);
115 }
116 return val;
117 }
118
119 /**
120 * Get encoded picture size - usually this is called from rv40_parse_slice_header.
121 */
123 {
126 }
127
129 {
130 int mb_bits;
132 int mb_size;
133
136 return -1;
141 return -1;
148 return -1;
151 mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
154
155 return 0;
156 }
157
158 /**
159 * Decode 4x4 intra types array.
160 */
162 {
164 int i, j, k, v;
166 int pattern;
167 int8_t *ptr;
168
172 dst[0] = (pattern >> 2) & 2;
173 dst[1] = (pattern >> 1) & 2;
174 dst[2] = pattern & 2;
175 dst[3] = (pattern << 1) & 2;
176 continue;
177 }
179 for(j = 0; j < 4; j++){
180 /* Coefficients are read using VLC chosen by the prediction pattern
181 * The first one (used for retrieving a pair of coefficients) is
182 * constructed from the top, top right and left coefficients
183 * The second one (used for retrieving only one coefficient) is
184 * top + 10 * left.
185 */
186 A = ptr[-r->
intra_types_stride + 1];
// it won't be used for the last coefficient in a row
188 C = ptr[-1];
189 pattern = A + (B << 4) + (C << 8);
192 break;
193 if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
195 *ptr++ = v/9;
196 *ptr++ = v%9;
197 j++;
198 }else{
199 if(B != -1 && C != -1)
201 else{ // tricky decoding
202 v = 0;
203 switch(C){
204 case -1: // code 0 -> 1, 1 -> 0
205 if(B < 2)
207 break;
208 case 0:
209 case 2: // code 0 -> 2, 1 -> 0
211 break;
212 }
213 }
214 *ptr++ = v;
215 }
216 }
217 }
218 return 0;
219 }
220
221 /**
222 * Decode macroblock information.
223 */
225 {
228 int q, i;
229 int prev_type = 0;
231
235 return -1;
236 }
237
240
243 int count = 0;
245 blocks[r->
mb_type[mb_pos - 1]]++;
252 if(blocks[i] > count){
253 count = blocks[i];
254 prev_type = i;
255 if(count>1)
256 break;
257 }
258 }
260 prev_type = r->
mb_type[mb_pos - 1];
261
266 return q;
269 }else{
273 return q;
276 }
277 return 0;
278 }
279
285 };
286
287 #define MASK_CUR 0x0001
288 #define MASK_RIGHT 0x0008
289 #define MASK_BOTTOM 0x0010
290 #define MASK_TOP 0x1000
291 #define MASK_Y_TOP_ROW 0x000F
292 #define MASK_Y_LAST_ROW 0xF000
293 #define MASK_Y_LEFT_COL 0x1111
294 #define MASK_Y_RIGHT_COL 0x8888
295 #define MASK_C_TOP_ROW 0x0003
296 #define MASK_C_LAST_ROW 0x000C
297 #define MASK_C_LEFT_COL 0x0005
298 #define MASK_C_RIGHT_COL 0x000A
299
302
305 int lim_q1, int lim_p1,
306 int alpha, int beta, int beta2,
307 int chroma, int edge, int dir)
308 {
309 int filter_p1, filter_q1;
310 int strong;
311 int lims;
312
314 edge, &filter_p1, &filter_q1);
315
316 lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
317
318 if (strong) {
320 lims, dmode, chroma);
321 } else if (filter_p1 & filter_q1) {
323 lims, lim_q1, lim_p1);
324 } else if (filter_p1 | filter_q1) {
326 alpha, beta, lims >> 1, lim_q1 >> 1,
327 lim_p1 >> 1);
328 }
329 }
330
331 /**
332 * RV40 loop filtering function
333 */
335 {
337 int mb_pos, mb_x;
338 int i, j, k;
340 int alpha, beta, betaY, betaC;
341 int q;
342 int mbtype[4]; ///< current macroblock and its neighbours types
343 /**
344 * flags indicating that macroblock can be filtered with strong filter
345 * it is set only for intra coded MB and MB with DCs coded separately
346 */
347 int mb_strong[4];
348 int clip[4];
///< MB filter clipping value calculated from filtering strength
349 /**
350 * coded block patterns for luma part of current macroblock and its neighbours
351 * Format:
352 * LSB corresponds to the top left block,
353 * each nibble represents one row of subblocks.
354 */
355 int cbp[4];
356 /**
357 * coded block patterns for chroma part of current macroblock and its neighbours
358 * Format is the same as for luma with two subblocks in a row.
359 */
360 int uvcbp[4][2];
361 /**
362 * This mask represents the pattern of luma subblocks that should be filtered
363 * in addition to the coded ones because because they lie at the edge of
364 * 8x8 block with different enough motion vectors
365 */
366 unsigned mvmasks[4];
367
369 for(mb_x = 0; mb_x < s->
mb_width; mb_x++, mb_pos++){
375 }
377 for(mb_x = 0; mb_x < s->
mb_width; mb_x++, mb_pos++){
378 int y_h_deblock, y_v_deblock;
379 int c_v_deblock[2], c_h_deblock[2];
380 int clip_left;
381 int avail[4];
382 unsigned y_to_deblock;
383 int c_to_deblock[2];
384
388 betaY = betaC = beta * 3;
390 betaY += beta;
391
392 avail[0] = 1;
393 avail[1] = row;
394 avail[2] = mb_x;
396 for(i = 0; i < 4; i++){
397 if(avail[i]){
404 }else{
405 mvmasks[i] = 0;
406 mbtype [i] = mbtype[0];
407 cbp [i] = 0;
408 uvcbp[i][0] = uvcbp[i][1] = 0;
409 }
412 }
413 y_to_deblock = mvmasks[
POS_CUR]
415 /* This pattern contains bits signalling that horizontal edges of
416 * the current block can be filtered.
417 * That happens when either of adjacent subblocks is coded or lies on
418 * the edge of 8x8 blocks with motion vectors differing by more than
419 * 3/4 pel in any component (any edge orientation for some reason).
420 */
421 y_h_deblock = y_to_deblock
424 /* This pattern contains bits signalling that vertical edges of
425 * the current block can be filtered.
426 * That happens when either of adjacent subblocks is coded or lies on
427 * the edge of 8x8 blocks with motion vectors differing by more than
428 * 3/4 pel in any component (any edge orientation for some reason).
429 */
430 y_v_deblock = y_to_deblock
433 if(!mb_x)
435 if(!row)
439 /* Calculating chroma patterns is similar and easier since there is
440 * no motion vector pattern for them.
441 */
442 for(i = 0; i < 2; i++){
444 c_v_deblock[i] = c_to_deblock[i]
447 c_h_deblock[i] = c_to_deblock[i]
450 if(!mb_x)
452 if(!row)
456 }
457
458 for(j = 0; j < 16; j += 4){
460 for(i = 0; i < 4; i++, Y += 4){
461 int ij = i + j;
463 int dither = j ? ij : i*4;
464
465 // if bottom block is coded then we can filter its top edge
466 // (or bottom edge of this block, which is the same)
471 clip_cur, alpha, beta, betaY,
472 0, 0, 0);
473 }
474 // filter left block edge in ordinary mode (with low filtering strength)
476 if(!i)
478 else
481 clip_cur,
482 clip_left,
483 alpha, beta, betaY, 0, 0, 1);
484 }
485 // filter top edge of the current macroblock when filtering strength is high
488 clip_cur,
489 mvmasks[POS_TOP] & (
MASK_TOP << i) ? clip[POS_TOP] : 0,
490 alpha, beta, betaY, 0, 1, 0);
491 }
492 // filter left block edge in edge mode (with high filtering strength)
493 if(y_v_deblock & (
MASK_CUR << ij) && !i && (mb_strong[
POS_CUR] | mb_strong[POS_LEFT])){
496 clip_cur,
497 clip_left,
498 alpha, beta, betaY, 0, 1, 1);
499 }
500 }
501 }
502 for(k = 0; k < 2; k++){
503 for(j = 0; j < 2; j++){
505 for(i = 0; i < 2; i++, C += 4){
506 int ij = i + j*2;
508 if(c_h_deblock[k] & (
MASK_CUR << (ij+2))){
509 int clip_bot = c_to_deblock[k] & (
MASK_CUR << (ij+2)) ? clip[
POS_CUR] : 0;
511 clip_bot,
512 clip_cur,
513 alpha, beta, betaC, 1, 0, 0);
514 }
516 if(!i)
518 else
519 clip_left = c_to_deblock[k] & (
MASK_CUR << (ij-1)) ? clip[
POS_CUR] : 0;
521 clip_cur,
522 clip_left,
523 alpha, beta, betaC, 1, 0, 1);
524 }
528 clip_cur,
529 clip_top,
530 alpha, beta, betaC, 1, 1, 0);
531 }
532 if(c_v_deblock[k] & (
MASK_CUR << ij) && !i && (mb_strong[
POS_CUR] | mb_strong[POS_LEFT])){
535 clip_cur,
536 clip_left,
537 alpha, beta, betaC, 1, 1, 1);
538 }
539 }
540 }
541 }
542 }
543 }
544
545 /**
546 * Initialize decoder.
547 */
549 {
551
554 if(!aic_top_vlc.
bits)
562 return 0;
563 }
564
580 };