1 /*
2 * AMR wideband decoder
3 * Copyright (c) 2010 Marcelo Galvao Povoa
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AMR wideband decoder
25 */
26
30
40
41 #define AMR_USE_16BIT_TABLES
43
46
52 float isf_cur[
LP_ORDER];
///< working ISF vector from current frame
53 float isf_q_past[
LP_ORDER];
///< quantized ISF vector of the previous frame
54 float isf_past_final[
LP_ORDER];
///< final processed ISF vector of the previous frame
55 double isp[4][
LP_ORDER];
///< ISP vectors from current frame
56 double isp_sub4_past[
LP_ORDER];
///< ISP vector for the 4th subframe of the previous frame
57
58 float lp_coef[4][
LP_ORDER];
///< Linear Prediction Coefficients from ISP vector
59
62
64 float *
excitation;
///< points to current excitation in excitation_buf[]
65
66 float pitch_vector[
AMRWB_SFR_SIZE];
///< adaptive codebook (pitch) vector for current subframe
67 float fixed_vector[
AMRWB_SFR_SIZE];
///< algebraic codebook (fixed) vector for current subframe
68
69 float prediction_error[4];
///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
70 float pitch_gain[6];
///< quantified pitch gains for the current and previous five subframes
71 float fixed_gain[2];
///< quantified fixed gains for the current and previous subframes
72
73 float tilt_coef;
///< {beta_1} related to the voicing of the previous subframe
74
77 float prev_tr_gain;
///< previous initial gain used by noise enhancer for threshold
78
82
83 float hpf_31_mem[2], hpf_400_mem[2];
///< previous values in the high pass filters
84 float demph_mem[1];
///< previous value in the de-emphasis filter
85 float bpf_6_7_mem[
HB_FIR_SIZE];
///< previous values in the high-band band pass filter
86 float lpf_7_mem[
HB_FIR_SIZE];
///< previous values in the high-band low pass filter
87
88 AVLFG prng;
///< random number generator for white noise excitation
94
96
98 {
100 int i;
101
105 }
106
112
114
117
120
121 for (i = 0; i < 4; i++)
123
126
131
132 return 0;
133 }
134
135 /**
136 * Decode the frame header in the "MIME/storage" format. This format
137 * is simpler and does not carry the auxiliary frame information.
138 *
139 * @param[in] ctx The Context
140 * @param[in] buf Pointer to the input buffer
141 *
142 * @return The decoded header length in bytes
143 */
145 {
146 /* Decode frame header (1st octet) */
149
150 return 1;
151 }
152
153 /**
154 * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
155 *
156 * @param[in] ind Array of 5 indexes
157 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
158 *
159 */
161 {
162 int i;
163
164 for (i = 0; i < 9; i++)
165 isf_q[i] =
dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
166
167 for (i = 0; i < 7; i++)
168 isf_q[i + 9] =
dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
169
170 for (i = 0; i < 5; i++)
172
173 for (i = 0; i < 4; i++)
175
176 for (i = 0; i < 7; i++)
178 }
179
180 /**
181 * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
182 *
183 * @param[in] ind Array of 7 indexes
184 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
185 *
186 */
188 {
189 int i;
190
191 for (i = 0; i < 9; i++)
192 isf_q[i] =
dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
193
194 for (i = 0; i < 7; i++)
195 isf_q[i + 9] =
dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
196
197 for (i = 0; i < 3; i++)
198 isf_q[i] +=
dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
199
200 for (i = 0; i < 3; i++)
201 isf_q[i + 3] +=
dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
202
203 for (i = 0; i < 3; i++)
204 isf_q[i + 6] +=
dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
205
206 for (i = 0; i < 3; i++)
207 isf_q[i + 9] +=
dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
208
209 for (i = 0; i < 4; i++)
210 isf_q[i + 12] +=
dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
211 }
212
213 /**
214 * Apply mean and past ISF values using the prediction factor.
215 * Updates past ISF vector.
216 *
217 * @param[in,out] isf_q Current quantized ISF
218 * @param[in,out] isf_past Past quantized ISF
219 *
220 */
222 {
223 int i;
224 float tmp;
225
227 tmp = isf_q[i];
228 isf_q[i] +=
isf_mean[i] * (1.0f / (1 << 15));
230 isf_past[i] = tmp;
231 }
232 }
233
234 /**
235 * Interpolate the fourth ISP vector from current and past frames
236 * to obtain an ISP vector for each subframe.
237 *
238 * @param[in,out] isp_q ISPs for each subframe
239 * @param[in] isp4_past Past ISP for subframe 4
240 */
242 {
243 int i, k;
244
245 for (k = 0; k < 3; k++) {
248 isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
249 }
250 }
251
252 /**
253 * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
254 * Calculate integer lag and fractional lag always using 1/4 resolution.
255 * In 1st and 3rd subframes the index is relative to last subframe integer lag.
256 *
257 * @param[out] lag_int Decoded integer pitch lag
258 * @param[out] lag_frac Decoded fractional pitch lag
259 * @param[in] pitch_index Adaptive codebook pitch index
260 * @param[in,out] base_lag_int Base integer lag used in relative subframes
261 * @param[in] subframe Current subframe index (0 to 3)
262 */
264 uint8_t *base_lag_int,
int subframe)
265 {
266 if (subframe == 0 || subframe == 2) {
267 if (pitch_index < 376) {
268 *lag_int = (pitch_index + 137) >> 2;
269 *lag_frac = pitch_index - (*lag_int << 2) + 136;
270 } else if (pitch_index < 440) {
271 *lag_int = (pitch_index + 257 - 376) >> 1;
272 *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
273 /* the actual resolution is 1/2 but expressed as 1/4 */
274 } else {
275 *lag_int = pitch_index - 280;
276 *lag_frac = 0;
277 }
278 /* minimum lag for next subframe */
279 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
281 // XXX: the spec states clearly that *base_lag_int should be
282 // the nearest integer to *lag_int (minus 8), but the ref code
283 // actually always uses its floor, I'm following the latter
284 } else {
285 *lag_int = (pitch_index + 1) >> 2;
286 *lag_frac = pitch_index - (*lag_int << 2);
287 *lag_int += *base_lag_int;
288 }
289 }
290
291 /**
292 * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
293 * The description is analogous to decode_pitch_lag_high, but in 6k60 the
294 * relative index is used for all subframes except the first.
295 */
298 {
299 if (subframe == 0 || (subframe == 2 && mode !=
MODE_6k60)) {
300 if (pitch_index < 116) {
301 *lag_int = (pitch_index + 69) >> 1;
302 *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
303 } else {
304 *lag_int = pitch_index - 24;
305 *lag_frac = 0;
306 }
307 // XXX: same problem as before
308 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
310 } else {
311 *lag_int = (pitch_index + 1) >> 1;
312 *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
313 *lag_int += *base_lag_int;
314 }
315 }
316
317 /**
318 * Find the pitch vector by interpolating the past excitation at the
319 * pitch delay, which is obtained in this function.
320 *
321 * @param[in,out] ctx The context
322 * @param[in] amr_subframe Current subframe data
323 * @param[in] subframe Current subframe index (0 to 3)
324 */
327 const int subframe)
328 {
329 int pitch_lag_int, pitch_lag_frac;
330 int i;
333
337 } else
340
342 pitch_lag_int += pitch_lag_frac > 0;
343
344 /* Calculate the pitch vector by interpolating the past excitation at the
345 pitch lag using a hamming windowed sinc function */
347 exc + 1 - pitch_lag_int,
349 pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
351
352 /* Check which pitch signal path should be used
353 * 6k60 and 8k85 modes have the ltp flag set to 0 */
354 if (amr_subframe->
ltp) {
356 } else {
358 ctx->
pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
359 0.18 * exc[i + 1];
360 memcpy(exc, ctx->
pitch_vector, AMRWB_SFR_SIZE *
sizeof(
float));
361 }
362 }
363
364 /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
365 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
366
367 /** Get the bit at specified position */
368 #define BIT_POS(x, p) (((x) >> (p)) & 1)
369
370 /**
371 * The next six functions decode_[i]p_track decode exactly i pulses
372 * positions and amplitudes (-1 or 1) in a subframe track using
373 * an encoded pulse indexing (TS 26.190 section 5.8.2).
374 *
375 * The results are given in out[], in which a negative number means
376 * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
377 *
378 * @param[out] out Output buffer (writes i elements)
379 * @param[in] code Pulse index (no. of bits varies, see below)
380 * @param[in] m (log2) Number of potential positions
381 * @param[in] off Offset for decoded positions
382 */
384 {
385 int pos =
BIT_STR(code, 0, m) +
off;
///code: m+1 bits
386
387 out[0] =
BIT_POS(code, m) ? -pos : pos;
388 }
389
391 {
394
395 out[0] =
BIT_POS(code, 2*m) ? -pos0 : pos0;
396 out[1] =
BIT_POS(code, 2*m) ? -pos1 : pos1;
397 out[1] = pos0 > pos1 ? -out[1] : out[1];
398 }
399
401 {
402 int half_2p =
BIT_POS(code, 2*m - 1) << (m - 1);
403
405 m - 1, off + half_2p);
407 }
408
410 {
411 int half_4p, subhalf_2p;
412 int b_offset = 1 << (m - 1);
413
414 switch (
BIT_STR(code, 4*m - 2, 2)) {
/* case ID (2 bits) */
415 case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
416 half_4p =
BIT_POS(code, 4*m - 3) << (m - 1);
// which has 4 pulses
417 subhalf_2p =
BIT_POS(code, 2*m - 3) << (m - 2);
418
420 m - 2, off + half_4p + subhalf_2p);
422 m - 1, off + half_4p);
423 break;
424 case 1: /* 1 pulse in A, 3 pulses in B */
426 m - 1, off);
428 m - 1, off + b_offset);
429 break;
430 case 2: /* 2 pulses in each half */
432 m - 1, off);
434 m - 1, off + b_offset);
435 break;
436 case 3: /* 3 pulses in A, 1 pulse in B */
438 m - 1, off);
440 m - 1, off + b_offset);
441 break;
442 }
443 }
444
446 {
447 int half_3p =
BIT_POS(code, 5*m - 1) << (m - 1);
448
450 m - 1, off + half_3p);
451
453 }
454
456 {
457 int b_offset = 1 << (m - 1);
458 /* which half has more pulses in cases 0 to 2 */
459 int half_more =
BIT_POS(code, 6*m - 5) << (m - 1);
460 int half_other = b_offset - half_more;
461
462 switch (
BIT_STR(code, 6*m - 4, 2)) {
/* case ID (2 bits) */
463 case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
465 m - 1, off + half_more);
467 m - 1, off + half_more);
468 break;
469 case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
471 m - 1, off + half_other);
473 m - 1, off + half_more);
474 break;
475 case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
477 m - 1, off + half_other);
479 m - 1, off + half_more);
480 break;
481 case 3: /* 3 pulses in A, 3 pulses in B */
483 m - 1, off);
485 m - 1, off + b_offset);
486 break;
487 }
488 }
489
490 /**
491 * Decode the algebraic codebook index to pulse positions and signs,
492 * then construct the algebraic codebook vector.
493 *
494 * @param[out] fixed_vector Buffer for the fixed codebook excitation
495 * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
496 * @param[in] pulse_lo LSBs part of the pulse index array
497 * @param[in] mode Mode of the current frame
498 */
500 const uint16_t *pulse_lo,
const enum Mode mode)
501 {
502 /* sig_pos stores for each track the decoded pulse position indexes
503 * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
504 int sig_pos[4][6];
505 int spacing = (mode ==
MODE_6k60) ? 2 : 4;
506 int i, j;
507
508 switch (mode) {
510 for (i = 0; i < 2; i++)
512 break;
514 for (i = 0; i < 4; i++)
516 break;
518 for (i = 0; i < 4; i++)
520 break;
522 for (i = 0; i < 2; i++)
524 for (i = 2; i < 4; i++)
526 break;
528 for (i = 0; i < 4; i++)
530 break;
532 for (i = 0; i < 4; i++)
534 ((int) pulse_hi[i] << 14), 4, 1);
535 break;
537 for (i = 0; i < 2; i++)
539 ((int) pulse_hi[i] << 10), 4, 1);
540 for (i = 2; i < 4; i++)
542 ((int) pulse_hi[i] << 14), 4, 1);
543 break;
546 for (i = 0; i < 4; i++)
548 ((int) pulse_hi[i] << 11), 4, 1);
549 break;
550 }
551
553
554 for (i = 0; i < 4; i++)
556 int pos = (
FFABS(sig_pos[i][j]) - 1) * spacing + i;
557
558 fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
559 }
560 }
561
562 /**
563 * Decode pitch gain and fixed gain correction factor.
564 *
565 * @param[in] vq_gain Vector-quantized index for gains
566 * @param[in] mode Mode of the current frame
567 * @param[out] fixed_gain_factor Decoded fixed gain correction factor
568 * @param[out] pitch_gain Decoded pitch gain
569 */
571 float *fixed_gain_factor, float *pitch_gain)
572 {
575
576 *pitch_gain = gains[0] * (1.0f / (1 << 14));
577 *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
578 }
579
580 /**
581 * Apply pitch sharpening filters to the fixed codebook vector.
582 *
583 * @param[in] ctx The context
584 * @param[in,out] fixed_vector Fixed codebook excitation
585 */
586 // XXX: Spec states this procedure should be applied when the pitch
587 // lag is less than 64, but this checking seems absent in reference and AMR-NB
589 {
590 int i;
591
592 /* Tilt part */
594 fixed_vector[i] -= fixed_vector[i - 1] * ctx->
tilt_coef;
595
596 /* Periodicity enhancement part */
598 fixed_vector[i] += fixed_vector[i - ctx->
pitch_lag_int] * 0.85;
599 }
600
601 /**
602 * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
603 *
604 * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
605 * @param[in] p_gain, f_gain Pitch and fixed gains
606 * @param[in] ctx The context
607 */
608 // XXX: There is something wrong with the precision here! The magnitudes
609 // of the energies are not correct. Please check the reference code carefully
611 float *f_vector, float f_gain,
613 {
614 double p_ener = (double) ctx->
dot_productf(p_vector, p_vector,
616 p_gain * p_gain;
617 double f_ener = (double) ctx->
dot_productf(f_vector, f_vector,
619 f_gain * f_gain;
620
621 return (p_ener - f_ener) / (p_ener + f_ener);
622 }
623
624 /**
625 * Reduce fixed vector sparseness by smoothing with one of three IR filters,
626 * also known as "adaptive phase dispersion".
627 *
628 * @param[in] ctx The context
629 * @param[in,out] fixed_vector Unfiltered fixed vector
630 * @param[out] buf Space for modified vector if necessary
631 *
632 * @return The potentially overwritten filtered fixed vector address
633 */
635 float *fixed_vector, float *buf)
636 {
637 int ir_filter_nr;
638
640 return fixed_vector;
641
643 ir_filter_nr = 0; // strong filtering
645 ir_filter_nr = 1; // medium filtering
646 } else
647 ir_filter_nr = 2; // no filtering
648
649 /* detect 'onset' */
651 if (ir_filter_nr < 2)
652 ir_filter_nr++;
653 } else {
654 int i, count = 0;
655
656 for (i = 0; i < 6; i++)
658 count++;
659
660 if (count > 2)
661 ir_filter_nr = 0;
662
664 ir_filter_nr--;
665 }
666
667 /* update ir filter strength history */
669
671
672 if (ir_filter_nr < 2) {
673 int i;
675
676 /* Circular convolution code in the reference
677 * decoder was modified to avoid using one
678 * extra array. The filtered vector is given by:
679 *
680 * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
681 */
682
685 if (fixed_vector[i])
687 AMRWB_SFR_SIZE);
688 fixed_vector = buf;
689 }
690
691 return fixed_vector;
692 }
693
694 /**
695 * Calculate a stability factor {teta} based on distance between
696 * current and past isf. A value of 1 shows maximum signal stability.
697 */
699 {
700 int i;
702
704 acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
705
706 // XXX: This part is not so clear from the reference code
707 // the result is more accurate changing the "/ 256" to "* 512"
708 return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
709 }
710
711 /**
712 * Apply a non-linear fixed gain smoothing in order to reduce
713 * fluctuation in the energy of excitation.
714 *
715 * @param[in] fixed_gain Unsmoothed fixed gain
716 * @param[in,out] prev_tr_gain Previous threshold gain (updated)
717 * @param[in] voice_fac Frame voicing factor
718 * @param[in] stab_fac Frame stability factor
719 *
720 * @return The smoothed gain
721 */
723 float voice_fac, float stab_fac)
724 {
725 float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
726 float g0;
727
728 // XXX: the following fixed-point constants used to in(de)crement
729 // gain by 1.5dB were taken from the reference code, maybe it could
730 // be simpler
731 if (fixed_gain < *prev_tr_gain) {
732 g0 =
FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
733 (6226 * (1.0f / (1 << 15)))); // +1.5 dB
734 } else
735 g0 =
FFMAX(*prev_tr_gain, fixed_gain *
736 (27536 * (1.0f / (1 << 15)))); // -1.5 dB
737
738 *prev_tr_gain = g0; // update next frame threshold
739
740 return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
741 }
742
743 /**
744 * Filter the fixed_vector to emphasize the higher frequencies.
745 *
746 * @param[in,out] fixed_vector Fixed codebook vector
747 * @param[in] voice_fac Frame voicing factor
748 */
750 {
751 int i;
752 float cpe = 0.125 * (1 + voice_fac);
753 float last = fixed_vector[0]; // holds c(i - 1)
754
755 fixed_vector[0] -= cpe * fixed_vector[1];
756
758 float cur = fixed_vector[i];
759
760 fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
761 last = cur;
762 }
763
764 fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
765 }
766
767 /**
768 * Conduct 16th order linear predictive coding synthesis from excitation.
769 *
770 * @param[in] ctx Pointer to the AMRWBContext
771 * @param[in] lpc Pointer to the LPC coefficients
772 * @param[out] excitation Buffer for synthesis final excitation
773 * @param[in] fixed_gain Fixed codebook gain for synthesis
774 * @param[in] fixed_vector Algebraic codebook vector
775 * @param[in,out] samples Pointer to the output samples and memory
776 */
778 float fixed_gain, const float *fixed_vector,
780 {
783
784 /* emphasize pitch vector contribution in low bitrate modes */
786 int i;
789
790 // XXX: Weird part in both ref code and spec. A unknown parameter
791 // {beta} seems to be identical to the current pitch gain
793
796
798 energy, AMRWB_SFR_SIZE);
799 }
800
803 }
804
805 /**
806 * Apply to synthesis a de-emphasis filter of the form:
807 * H(z) = 1 / (1 - m * z^-1)
808 *
809 * @param[out] out Output buffer
810 * @param[in] in Input samples array with in[-1]
811 * @param[in] m Filter coefficient
812 * @param[in,out] mem State from last filtering
813 */
815 {
816 int i;
817
818 out[0] = in[0] + m * mem[0];
819
821 out[i] = in[i] + out[i - 1] * m;
822
823 mem[0] = out[AMRWB_SFR_SIZE - 1];
824 }
825
826 /**
827 * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
828 * a FIR interpolation filter. Uses past data from before *in address.
829 *
830 * @param[out] out Buffer for interpolated signal
831 * @param[in] in Current signal data (length 0.8*o_size)
832 * @param[in] o_size Output signal length
833 * @param[in] ctx The context
834 */
836 {
838 int i, j, k;
839 int int_part = 0, frac_part;
840
841 i = 0;
842 for (j = 0; j < o_size / 5; j++) {
843 out[i] = in[int_part];
844 frac_part = 4;
845 i++;
846
847 for (k = 1; k < 5; k++) {
851 int_part++;
852 frac_part--;
853 i++;
854 }
855 }
856 }
857
858 /**
859 * Calculate the high-band gain based on encoded index (23k85 mode) or
860 * on the low-band speech signal and the Voice Activity Detection flag.
861 *
862 * @param[in] ctx The context
863 * @param[in] synth LB speech synthesis at 12.8k
864 * @param[in] hb_idx Gain index for mode 23k85 only
865 * @param[in] vad VAD flag for the frame
866 */
869 {
870 int wsp = (vad > 0);
871 float tilt;
872
875
878
879 /* return gain bounded by [0.1, 1.0] */
880 return av_clipf((1.0 -
FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
881 }
882
883 /**
884 * Generate the high-band excitation with the same energy from the lower
885 * one and scaled by the given gain.
886 *
887 * @param[in] ctx The context
888 * @param[out] hb_exc Buffer for the excitation
889 * @param[in] synth_exc Low-band excitation used for synthesis
890 * @param[in] hb_gain Wanted excitation gain
891 */
893 const float *synth_exc, float hb_gain)
894 {
895 int i;
897
898 /* Generate a white-noise excitation */
901
903 energy * hb_gain * hb_gain,
904 AMRWB_SFR_SIZE_16k);
905 }
906
907 /**
908 * Calculate the auto-correlation for the ISF difference vector.
909 */
911 {
912 int i;
913 float sum = 0.0;
914
915 for (i = 7; i <
LP_ORDER - 2; i++) {
916 float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
917 sum += prod * prod;
918 }
919 return sum;
920 }
921
922 /**
923 * Extrapolate a ISF vector to the 16kHz range (20th order LP)
924 * used at mode 6k60 LP filter for the high frequency band.
925 *
926 * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
927 * values on input
928 */
930 {
931 float diff_isf[
LP_ORDER - 2], diff_mean;
932 float corr_lag[3];
934 int i, j, i_max_corr;
935
936 isf[LP_ORDER_16k - 1] = isf[
LP_ORDER - 1];
937
938 /* Calculate the difference vector */
940 diff_isf[i] = isf[i + 1] - isf[i];
941
942 diff_mean = 0.0;
943 for (i = 2; i < LP_ORDER - 2; i++)
944 diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
945
946 /* Find which is the maximum autocorrelation */
947 i_max_corr = 0;
948 for (i = 0; i < 3; i++) {
950
951 if (corr_lag[i] > corr_lag[i_max_corr])
952 i_max_corr = i;
953 }
954 i_max_corr++;
955
956 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
957 isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
958 - isf[i - 2 - i_max_corr];
959
960 /* Calculate an estimate for ISF(18) and scale ISF based on the error */
961 est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
962 scale = 0.5 * (
FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
963 (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
964
965 for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
966 diff_isf[j] = scale * (isf[i] - isf[i - 1]);
967
968 /* Stability insurance */
969 for (i = 1; i < LP_ORDER_16k -
LP_ORDER; i++)
970 if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
971 if (diff_isf[i] > diff_isf[i - 1]) {
972 diff_isf[i - 1] = 5.0 - diff_isf[i];
973 } else
974 diff_isf[i] = 5.0 - diff_isf[i - 1];
975 }
976
977 for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
978 isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
979
980 /* Scale the ISF vector for 16000 Hz */
981 for (i = 0; i < LP_ORDER_16k - 1; i++)
982 isf[i] *= 0.8;
983 }
984
985 /**
986 * Spectral expand the LP coefficients using the equation:
987 * y[i] = x[i] * (gamma ** i)
988 *
989 * @param[out] out Output buffer (may use input array)
990 * @param[in] lpc LP coefficients array
991 * @param[in] gamma Weighting factor
992 * @param[in] size LP array size
993 */
995 {
996 int i;
997 float fac = gamma;
998
999 for (i = 0; i <
size; i++) {
1000 out[i] = lpc[i] * fac;
1001 fac *= gamma;
1002 }
1003 }
1004
1005 /**
1006 * Conduct 20th order linear predictive coding synthesis for the high
1007 * frequency band excitation at 16kHz.
1008 *
1009 * @param[in] ctx The context
1010 * @param[in] subframe Current subframe index (0 to 3)
1011 * @param[in,out] samples Pointer to the output speech samples
1012 * @param[in] exc Generated white-noise scaled excitation
1013 * @param[in] isf Current frame isf vector
1014 * @param[in] isf_past Past frame final isf vector
1015 */
1017 const float *exc, const float *isf, const float *isf_past)
1018 {
1021
1023 float e_isf[
LP_ORDER_16k];
// ISF vector for extrapolation
1025
1028
1030
1034
1036 } else {
1038 }
1039
1042 }
1043
1044 /**
1045 * Apply a 15th order filter to high-band samples.
1046 * The filter characteristic depends on the given coefficients.
1047 *
1048 * @param[out] out Buffer for filtered output
1049 * @param[in] fir_coef Filter coefficients
1050 * @param[in,out] mem State from last filtering (updated)
1051 * @param[in] in Input speech data (high-band)
1052 *
1053 * @remark It is safe to pass the same array in in and out parameters
1054 */
1055
1056 #ifndef hb_fir_filter
1059 {
1060 int i, j;
1062
1063 memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
1065
1067 out[i] = 0.0;
1069 out[i] += data[i + j] * fir_coef[j];
1070 }
1071
1072 memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
1073 }
1074 #endif /* hb_fir_filter */
1075
1076 /**
1077 * Update context state before the next subframe.
1078 */
1080 {
1083
1086
1093 }
1094
1096 int *got_frame_ptr,
AVPacket *avpkt)
1097 {
1101 int buf_size = avpkt->
size;
1102 int expected_fr_size, header_size;
1103 float *buf_out;
1104 float spare_vector[
AMRWB_SFR_SIZE];
// extra stack space to hold result from anti-sparseness processing
1105 float fixed_gain_factor; // fixed gain correction factor (gamma)
1106 float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
1107 float synth_fixed_gain; // the fixed gain that synthesis should use
1108 float voice_fac, stab_fac; // parameters used for gain smoothing
1109 float synth_exc[
AMRWB_SFR_SIZE];
// post-processed excitation for synthesis
1112 float hb_gain;
1113 int sub, i, ret;
1114
1115 /* get output buffer */
1119 return ret;
1120 }
1122
1128 }
1130
1131 if (buf_size < expected_fr_size) {
1133 "Frame too small (%d bytes). Truncated file?\n", buf_size);
1134 *got_frame_ptr = 0;
1136 }
1137
1140
1144 }
1145
1148
1149 /* Decode the quantized ISF vector */
1152 } else {
1154 }
1155
1158
1160
1163
1164 /* Generate a ISP vector for each subframe */
1168 }
1170
1171 for (sub = 0; sub < 4; sub++)
1173
1174 for (sub = 0; sub < 4; sub++) {
1177
1178 /* Decode adaptive codebook (pitch vector) */
1180 /* Decode innovative codebook (fixed vector) */
1183
1185
1188
1197
1198 /* Calculate voice factor and store tilt for next subframe */
1202 ctx->
tilt_coef = voice_fac * 0.25 + 0.25;
1203
1204 /* Construct current excitation */
1209 }
1210
1211 /* Post-processing of excitation elements */
1213 voice_fac, stab_fac);
1214
1216 spare_vector);
1217
1219
1222
1223 /* Synthesis speech post-processing */
1226
1230
1233
1234 /* High frequency band (6.4 - 7.0 kHz) generation part */
1238
1241
1243
1246
1247 /* High-band post-processing filters */
1250
1253 hb_samples);
1254
1255 /* Add the low and high frequency bands */
1257 sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
1258
1259 /* Update buffers and history */
1261 }
1262
1263 /* update state for next frame */
1266
1267 *got_frame_ptr = 1;
1269
1270 return expected_fr_size;
1271 }
1272
1284 };