Jump to content
Wikipedia The Free Encyclopedia

Dawson function

From Wikipedia, the free encyclopedia
(Redirected from Dawson's function)
Mathematical function
Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the Dawson integral function F(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the Dawson function or Dawson integral[1] (named after H. G. Dawson [2] ) is the one-sided Fourier–Laplace sine transform of the Gaussian function.

Definition

[edit ]
The Dawson function, F ( x ) = D + ( x ) , {\displaystyle F(x)=D_{+}(x),} {\displaystyle F(x)=D_{+}(x),} around the origin
The Dawson function, D ( x ) , {\displaystyle D_{-}(x),} {\displaystyle D_{-}(x),} around the origin

The Dawson function is defined as either: D + ( x ) = e x 2 0 x e t 2 d t , {\displaystyle D_{+}(x)=e^{-x^{2}}\int _{0}^{x}e^{t^{2}},円dt,} {\displaystyle D_{+}(x)=e^{-x^{2}}\int _{0}^{x}e^{t^{2}},円dt,} also denoted as F ( x ) {\displaystyle F(x)} {\displaystyle F(x)} or D ( x ) , {\displaystyle D(x),} {\displaystyle D(x),} or alternatively D ( x ) = e x 2 0 x e t 2 d t . {\displaystyle D_{-}(x)=e^{x^{2}}\int _{0}^{x}e^{-t^{2}},円dt.\!} {\displaystyle D_{-}(x)=e^{x^{2}}\int _{0}^{x}e^{-t^{2}},円dt.\!}

The Dawson function is the one-sided Fourier–Laplace sine transform of the Gaussian function, D + ( x ) = 1 2 0 e t 2 / 4 sin ( x t ) d t . {\displaystyle D_{+}(x)={\frac {1}{2}}\int _{0}^{\infty }e^{-t^{2}/4},円\sin(xt),円dt.} {\displaystyle D_{+}(x)={\frac {1}{2}}\int _{0}^{\infty }e^{-t^{2}/4},円\sin(xt),円dt.}

It is closely related to the error function erf, as

D + ( x ) = π 2 e x 2 erfi ( x ) = i π 2 e x 2 erf ( i x ) {\displaystyle D_{+}(x)={{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erfi} (x)=-{i{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erf} (ix)} {\displaystyle D_{+}(x)={{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erfi} (x)=-{i{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erf} (ix)}

where erfi is the imaginary error function, erfi(x) = −i erf(ix).
Similarly, D ( x ) = π 2 e x 2 erf ( x ) {\displaystyle D_{-}(x)={\frac {\sqrt {\pi }}{2}}e^{x^{2}}\operatorname {erf} (x)} {\displaystyle D_{-}(x)={\frac {\sqrt {\pi }}{2}}e^{x^{2}}\operatorname {erf} (x)} in terms of the real error function, erf.

In terms of either erfi or the Faddeeva function w ( z ) , {\displaystyle w(z),} {\displaystyle w(z),} the Dawson function can be extended to the entire complex plane:[3] F ( z ) = π 2 e z 2 erfi ( z ) = i π 2 [ e z 2 w ( z ) ] , {\displaystyle F(z)={{\sqrt {\pi }} \over 2}e^{-z^{2}}\operatorname {erfi} (z)={\frac {i{\sqrt {\pi }}}{2}}\left[e^{-z^{2}}-w(z)\right],} {\displaystyle F(z)={{\sqrt {\pi }} \over 2}e^{-z^{2}}\operatorname {erfi} (z)={\frac {i{\sqrt {\pi }}}{2}}\left[e^{-z^{2}}-w(z)\right],} which simplifies to D + ( x ) = F ( x ) = π 2 Im [ w ( x ) ] {\displaystyle D_{+}(x)=F(x)={\frac {\sqrt {\pi }}{2}}\operatorname {Im} [w(x)]} {\displaystyle D_{+}(x)=F(x)={\frac {\sqrt {\pi }}{2}}\operatorname {Im} [w(x)]} D ( x ) = i F ( i x ) = π 2 [ e x 2 w ( i x ) ] {\displaystyle D_{-}(x)=iF(-ix)=-{\frac {\sqrt {\pi }}{2}}\left[e^{x^{2}}-w(-ix)\right]} {\displaystyle D_{-}(x)=iF(-ix)=-{\frac {\sqrt {\pi }}{2}}\left[e^{x^{2}}-w(-ix)\right]} for real x . {\displaystyle x.} {\displaystyle x.}

For | x | {\displaystyle |x|} {\displaystyle |x|} near zero, F(x) ≈ x. For | x | {\displaystyle |x|} {\displaystyle |x|} large, F(x) ≈ 1/(2x). More specifically, near the origin it has the series expansion F ( x ) = k = 0 ( 1 ) k 2 k ( 2 k + 1 ) ! ! x 2 k + 1 = x 2 3 x 3 + 4 15 x 5 , {\displaystyle F(x)=\sum _{k=0}^{\infty }{\frac {(-1)^{k},2円^{k}}{(2k+1)!!}},円x^{2k+1}=x-{\frac {2}{3}}x^{3}+{\frac {4}{15}}x^{5}-\cdots ,} {\displaystyle F(x)=\sum _{k=0}^{\infty }{\frac {(-1)^{k},2円^{k}}{(2k+1)!!}},円x^{2k+1}=x-{\frac {2}{3}}x^{3}+{\frac {4}{15}}x^{5}-\cdots ,} while for large x {\displaystyle x} {\displaystyle x} it has the asymptotic expansion F ( x ) = 1 2 x + 1 4 x 3 + 3 8 x 5 + . {\displaystyle F(x)={\frac {1}{2x}}+{\frac {1}{4x^{3}}}+{\frac {3}{8x^{5}}}+\cdots .} {\displaystyle F(x)={\frac {1}{2x}}+{\frac {1}{4x^{3}}}+{\frac {3}{8x^{5}}}+\cdots .}

More precisely | F ( x ) k = 0 N ( 2 k 1 ) ! ! 2 k + 1 x 2 k + 1 | C N x 2 N + 3 . {\displaystyle \left|F(x)-\sum _{k=0}^{N}{\frac {(2k-1)!!}{2^{k+1}x^{2k+1}}}\right|\leq {\frac {C_{N}}{x^{2N+3}}}.} {\displaystyle \left|F(x)-\sum _{k=0}^{N}{\frac {(2k-1)!!}{2^{k+1}x^{2k+1}}}\right|\leq {\frac {C_{N}}{x^{2N+3}}}.} where n ! ! {\displaystyle n!!} {\displaystyle n!!} is the double factorial.

F ( x ) {\displaystyle F(x)} {\displaystyle F(x)} satisfies the differential equation d F d x + 2 x F = 1 {\displaystyle {\frac {dF}{dx}}+2xF=1,円\!} {\displaystyle {\frac {dF}{dx}}+2xF=1,円\!} with the initial condition F ( 0 ) = 0. {\displaystyle F(0)=0.} {\displaystyle F(0)=0.} Consequently, it has extrema for F ( x ) = 1 2 x , {\displaystyle F(x)={\frac {1}{2x}},} {\displaystyle F(x)={\frac {1}{2x}},} resulting in x = ±0.92413887... (OEISA133841 ), F(x) = ±0.54104422... (OEISA133842 ).

Inflection points follow for F ( x ) = x 2 x 2 1 , {\displaystyle F(x)={\frac {x}{2x^{2}-1}},} {\displaystyle F(x)={\frac {x}{2x^{2}-1}},} resulting in x = ±1.50197526... (OEISA133843 ), F(x) = ±0.42768661... (OEISA245262 ). (Apart from the trivial inflection point at x = 0 , {\displaystyle x=0,} {\displaystyle x=0,} F ( x ) = 0. {\displaystyle F(x)=0.} {\displaystyle F(x)=0.})

Relation to Hilbert transform of Gaussian

[edit ]

The Hilbert transform of the Gaussian is defined as H ( y ) = π 1 P . V . e x 2 y x d x {\displaystyle H(y)=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {e^{-x^{2}}}{y-x}},円dx} {\displaystyle H(y)=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {e^{-x^{2}}}{y-x}},円dx}

P.V. denotes the Cauchy principal value, and we restrict ourselves to real y . {\displaystyle y.} {\displaystyle y.} H ( y ) {\displaystyle H(y)} {\displaystyle H(y)} can be related to the Dawson function as follows. Inside a principal value integral, we can treat 1 / u {\displaystyle 1/u} {\displaystyle 1/u} as a generalized function or distribution, and use the Fourier representation 1 u = 0 d k sin k u = 0 d k Im e i k u . {\displaystyle {1 \over u}=\int _{0}^{\infty }dk,円\sin ku=\int _{0}^{\infty }dk,円\operatorname {Im} e^{iku}.} {\displaystyle {1 \over u}=\int _{0}^{\infty }dk,円\sin ku=\int _{0}^{\infty }dk,円\operatorname {Im} e^{iku}.}

With 1 / u = 1 / ( y x ) , {\displaystyle 1/u=1/(y-x),} {\displaystyle 1/u=1/(y-x),} we use the exponential representation of sin ( k u ) {\displaystyle \sin(ku)} {\displaystyle \sin(ku)} and complete the square with respect to x {\displaystyle x} {\displaystyle x} to find π H ( y ) = Im 0 d k exp [ k 2 / 4 + i k y ] d x exp [ ( x + i k / 2 ) 2 ] . {\displaystyle \pi H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky]\int _{-\infty }^{\infty }dx,円\exp[-(x+ik/2)^{2}].} {\displaystyle \pi H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky]\int _{-\infty }^{\infty }dx,円\exp[-(x+ik/2)^{2}].}

We can shift the integral over x {\displaystyle x} {\displaystyle x} to the real axis, and it gives π 1 / 2 . {\displaystyle \pi ^{1/2}.} {\displaystyle \pi ^{1/2}.} Thus π 1 / 2 H ( y ) = Im 0 d k exp [ k 2 / 4 + i k y ] . {\displaystyle \pi ^{1/2}H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky].} {\displaystyle \pi ^{1/2}H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky].}

We complete the square with respect to k {\displaystyle k} {\displaystyle k} and obtain π 1 / 2 H ( y ) = e y 2 Im 0 d k exp [ ( k / 2 i y ) 2 ] . {\displaystyle \pi ^{1/2}H(y)=e^{-y^{2}}\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-(k/2-iy)^{2}].} {\displaystyle \pi ^{1/2}H(y)=e^{-y^{2}}\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-(k/2-iy)^{2}].}

We change variables to u = i k / 2 + y : {\displaystyle u=ik/2+y:} {\displaystyle u=ik/2+y:} π 1 / 2 H ( y ) = 2 e y 2 Im i y i + y d u   e u 2 . {\displaystyle \pi ^{1/2}H(y)=-2e^{-y^{2}}\operatorname {Im} i\int _{y}^{i\infty +y}du\ e^{u^{2}}.} {\displaystyle \pi ^{1/2}H(y)=-2e^{-y^{2}}\operatorname {Im} i\int _{y}^{i\infty +y}du\ e^{u^{2}}.}

The integral can be performed as a contour integral around a rectangle in the complex plane. Taking the imaginary part of the result gives H ( y ) = 2 π 1 / 2 F ( y ) {\displaystyle H(y)=2\pi ^{-1/2}F(y)} {\displaystyle H(y)=2\pi ^{-1/2}F(y)} where F ( y ) {\displaystyle F(y)} {\displaystyle F(y)} is the Dawson function as defined above.

The Hilbert transform of x 2 n e x 2 {\displaystyle x^{2n}e^{-x^{2}}} {\displaystyle x^{2n}e^{-x^{2}}} is also related to the Dawson function. We see this with the technique of differentiating inside the integral sign. Let H n = π 1 P . V . x 2 n e x 2 y x d x . {\displaystyle H_{n}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-x^{2}}}{y-x}},円dx.} {\displaystyle H_{n}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-x^{2}}}{y-x}},円dx.}

Introduce H a = π 1 P . V . e a x 2 y x d x . {\displaystyle H_{a}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{e^{-ax^{2}} \over y-x},円dx.} {\displaystyle H_{a}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{e^{-ax^{2}} \over y-x},円dx.}

The n {\displaystyle n} {\displaystyle n}th derivative is n H a a n = ( 1 ) n π 1 P . V . x 2 n e a x 2 y x d x . {\displaystyle {\partial ^{n}H_{a} \over \partial a^{n}}=(-1)^{n}\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-ax^{2}}}{y-x}},円dx.} {\displaystyle {\partial ^{n}H_{a} \over \partial a^{n}}=(-1)^{n}\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-ax^{2}}}{y-x}},円dx.}

We thus find H n = ( 1 ) n n H a a n | a = 1 . {\displaystyle \left.H_{n}=(-1)^{n}{\frac {\partial ^{n}H_{a}}{\partial a^{n}}}\right|_{a=1}.} {\displaystyle \left.H_{n}=(-1)^{n}{\frac {\partial ^{n}H_{a}}{\partial a^{n}}}\right|_{a=1}.}

The derivatives are performed first, then the result evaluated at a = 1. {\displaystyle a=1.} {\displaystyle a=1.} A change of variable also gives H a = 2 π 1 / 2 F ( y a ) . {\displaystyle H_{a}=2\pi ^{-1/2}F(y{\sqrt {a}}).} {\displaystyle H_{a}=2\pi ^{-1/2}F(y{\sqrt {a}}).} Since F ( y ) = 1 2 y F ( y ) , {\displaystyle F'(y)=1-2yF(y),} {\displaystyle F'(y)=1-2yF(y),} we can write H n = P 1 ( y ) + P 2 ( y ) F ( y ) {\displaystyle H_{n}=P_{1}(y)+P_{2}(y)F(y)} {\displaystyle H_{n}=P_{1}(y)+P_{2}(y)F(y)} where P 1 {\displaystyle P_{1}} {\displaystyle P_{1}} and P 2 {\displaystyle P_{2}} {\displaystyle P_{2}} are polynomials. For example, H 1 = π 1 / 2 y + 2 π 1 / 2 y 2 F ( y ) . {\displaystyle H_{1}=-\pi ^{-1/2}y+2\pi ^{-1/2}y^{2}F(y).} {\displaystyle H_{1}=-\pi ^{-1/2}y+2\pi ^{-1/2}y^{2}F(y).} Alternatively, H n {\displaystyle H_{n}} {\displaystyle H_{n}} can be calculated using the recurrence relation (for n 0 {\displaystyle n\geq 0} {\displaystyle n\geq 0}) H n + 1 ( y ) = y 2 H n ( y ) ( 2 n 1 ) ! ! π 2 n y . {\displaystyle H_{n+1}(y)=y^{2}H_{n}(y)-{\frac {(2n-1)!!}{{\sqrt {\pi }}2^{n}}}y.} {\displaystyle H_{n+1}(y)=y^{2}H_{n}(y)-{\frac {(2n-1)!!}{{\sqrt {\pi }}2^{n}}}y.}

See also

[edit ]

References

[edit ]
  1. ^ Temme, N. M. (2010), "Error Functions, Dawson's and Fresnel Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 .
  2. ^ Dawson, H. G. (1897). "On the Numerical Value of 0 h exp ( x 2 ) d x {\displaystyle \textstyle \int _{0}^{h}\exp(x^{2}),円dx} {\displaystyle \textstyle \int _{0}^{h}\exp(x^{2}),円dx}". Proceedings of the London Mathematical Society. s1-29 (1): 519–522. doi:10.1112/plms/s1-29.1.519.
  3. ^ Mofreh R. Zaghloul and Ahmed N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt Functions," ACM Trans. Math. Soft. 38 (2), 15 (2011). Preprint available at arXiv:1106.0151.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /