Dawson function
In mathematics, the Dawson function or Dawson integral[1] (named after H. G. Dawson [2] ) is the one-sided Fourier–Laplace sine transform of the Gaussian function.
Definition
[edit ]The Dawson function is defined as either: {\displaystyle D_{+}(x)=e^{-x^{2}}\int _{0}^{x}e^{t^{2}},円dt,} also denoted as {\displaystyle F(x)} or {\displaystyle D(x),} or alternatively {\displaystyle D_{-}(x)=e^{x^{2}}\int _{0}^{x}e^{-t^{2}},円dt.\!}
The Dawson function is the one-sided Fourier–Laplace sine transform of the Gaussian function, {\displaystyle D_{+}(x)={\frac {1}{2}}\int _{0}^{\infty }e^{-t^{2}/4},円\sin(xt),円dt.}
It is closely related to the error function erf, as
- {\displaystyle D_{+}(x)={{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erfi} (x)=-{i{\sqrt {\pi }} \over 2}e^{-x^{2}}\operatorname {erf} (ix)}
where erfi is the imaginary error function, erfi(x) = −i erf(ix).
Similarly,
{\displaystyle D_{-}(x)={\frac {\sqrt {\pi }}{2}}e^{x^{2}}\operatorname {erf} (x)}
in terms of the real error function, erf.
In terms of either erfi or the Faddeeva function {\displaystyle w(z),} the Dawson function can be extended to the entire complex plane:[3] {\displaystyle F(z)={{\sqrt {\pi }} \over 2}e^{-z^{2}}\operatorname {erfi} (z)={\frac {i{\sqrt {\pi }}}{2}}\left[e^{-z^{2}}-w(z)\right],} which simplifies to {\displaystyle D_{+}(x)=F(x)={\frac {\sqrt {\pi }}{2}}\operatorname {Im} [w(x)]} {\displaystyle D_{-}(x)=iF(-ix)=-{\frac {\sqrt {\pi }}{2}}\left[e^{x^{2}}-w(-ix)\right]} for real {\displaystyle x.}
For {\displaystyle |x|} near zero, F(x) ≈ x. For {\displaystyle |x|} large, F(x) ≈ 1/(2x). More specifically, near the origin it has the series expansion {\displaystyle F(x)=\sum _{k=0}^{\infty }{\frac {(-1)^{k},2円^{k}}{(2k+1)!!}},円x^{2k+1}=x-{\frac {2}{3}}x^{3}+{\frac {4}{15}}x^{5}-\cdots ,} while for large {\displaystyle x} it has the asymptotic expansion {\displaystyle F(x)={\frac {1}{2x}}+{\frac {1}{4x^{3}}}+{\frac {3}{8x^{5}}}+\cdots .}
More precisely {\displaystyle \left|F(x)-\sum _{k=0}^{N}{\frac {(2k-1)!!}{2^{k+1}x^{2k+1}}}\right|\leq {\frac {C_{N}}{x^{2N+3}}}.} where {\displaystyle n!!} is the double factorial.
{\displaystyle F(x)} satisfies the differential equation {\displaystyle {\frac {dF}{dx}}+2xF=1,円\!} with the initial condition {\displaystyle F(0)=0.} Consequently, it has extrema for {\displaystyle F(x)={\frac {1}{2x}},} resulting in x = ±0.92413887... (OEIS: A133841 ), F(x) = ±0.54104422... (OEIS: A133842 ).
Inflection points follow for {\displaystyle F(x)={\frac {x}{2x^{2}-1}},} resulting in x = ±1.50197526... (OEIS: A133843 ), F(x) = ±0.42768661... (OEIS: A245262 ). (Apart from the trivial inflection point at {\displaystyle x=0,} {\displaystyle F(x)=0.})
Relation to Hilbert transform of Gaussian
[edit ]The Hilbert transform of the Gaussian is defined as {\displaystyle H(y)=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {e^{-x^{2}}}{y-x}},円dx}
P.V. denotes the Cauchy principal value, and we restrict ourselves to real {\displaystyle y.} {\displaystyle H(y)} can be related to the Dawson function as follows. Inside a principal value integral, we can treat {\displaystyle 1/u} as a generalized function or distribution, and use the Fourier representation {\displaystyle {1 \over u}=\int _{0}^{\infty }dk,円\sin ku=\int _{0}^{\infty }dk,円\operatorname {Im} e^{iku}.}
With {\displaystyle 1/u=1/(y-x),} we use the exponential representation of {\displaystyle \sin(ku)} and complete the square with respect to {\displaystyle x} to find {\displaystyle \pi H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky]\int _{-\infty }^{\infty }dx,円\exp[-(x+ik/2)^{2}].}
We can shift the integral over {\displaystyle x} to the real axis, and it gives {\displaystyle \pi ^{1/2}.} Thus {\displaystyle \pi ^{1/2}H(y)=\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-k^{2}/4+iky].}
We complete the square with respect to {\displaystyle k} and obtain {\displaystyle \pi ^{1/2}H(y)=e^{-y^{2}}\operatorname {Im} \int _{0}^{\infty }dk,円\exp[-(k/2-iy)^{2}].}
We change variables to {\displaystyle u=ik/2+y:} {\displaystyle \pi ^{1/2}H(y)=-2e^{-y^{2}}\operatorname {Im} i\int _{y}^{i\infty +y}du\ e^{u^{2}}.}
The integral can be performed as a contour integral around a rectangle in the complex plane. Taking the imaginary part of the result gives {\displaystyle H(y)=2\pi ^{-1/2}F(y)} where {\displaystyle F(y)} is the Dawson function as defined above.
The Hilbert transform of {\displaystyle x^{2n}e^{-x^{2}}} is also related to the Dawson function. We see this with the technique of differentiating inside the integral sign. Let {\displaystyle H_{n}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-x^{2}}}{y-x}},円dx.}
Introduce {\displaystyle H_{a}=\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{e^{-ax^{2}} \over y-x},円dx.}
The {\displaystyle n}th derivative is {\displaystyle {\partial ^{n}H_{a} \over \partial a^{n}}=(-1)^{n}\pi ^{-1}\operatorname {P.V.} \int _{-\infty }^{\infty }{\frac {x^{2n}e^{-ax^{2}}}{y-x}},円dx.}
We thus find {\displaystyle \left.H_{n}=(-1)^{n}{\frac {\partial ^{n}H_{a}}{\partial a^{n}}}\right|_{a=1}.}
The derivatives are performed first, then the result evaluated at {\displaystyle a=1.} A change of variable also gives {\displaystyle H_{a}=2\pi ^{-1/2}F(y{\sqrt {a}}).} Since {\displaystyle F'(y)=1-2yF(y),} we can write {\displaystyle H_{n}=P_{1}(y)+P_{2}(y)F(y)} where {\displaystyle P_{1}} and {\displaystyle P_{2}} are polynomials. For example, {\displaystyle H_{1}=-\pi ^{-1/2}y+2\pi ^{-1/2}y^{2}F(y).} Alternatively, {\displaystyle H_{n}} can be calculated using the recurrence relation (for {\displaystyle n\geq 0}) {\displaystyle H_{n+1}(y)=y^{2}H_{n}(y)-{\frac {(2n-1)!!}{{\sqrt {\pi }}2^{n}}}y.}
See also
[edit ]References
[edit ]- ^ Temme, N. M. (2010), "Error Functions, Dawson's and Fresnel Integrals", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 .
- ^ Dawson, H. G. (1897). "On the Numerical Value of {\displaystyle \textstyle \int _{0}^{h}\exp(x^{2}),円dx}". Proceedings of the London Mathematical Society. s1-29 (1): 519–522. doi:10.1112/plms/s1-29.1.519.
- ^ Mofreh R. Zaghloul and Ahmed N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt Functions," ACM Trans. Math. Soft. 38 (2), 15 (2011). Preprint available at arXiv:1106.0151.
External links
[edit ]- gsl_sf_dawson in the GNU Scientific Library
- libcerf, numeric C library for complex error functions, provides a function voigt(x, sigma, gamma) with approximately 13–14 digits precision. It is based on the Faddeeva function as implemented in the MIT Faddeeva Package
- Dawson's Integral (at Mathworld)
- Error functions Archived 2019年11月01日 at the Wayback Machine