Jump to content
Wikipedia The Free Encyclopedia

Commutative magma

From Wikipedia, the free encyclopedia

In mathematics, there exist magmas that are commutative but not associative . A simple example of such a magma may be derived from the children's game of rock, paper, scissors. Such magmas give rise to non-associative algebras.

A magma which is both commutative and associative is a commutative semigroup.

Example: rock, paper, scissors

[edit ]

In the game of rock paper scissors, let M := { r , p , s } {\displaystyle M:=\{r,p,s\}} {\displaystyle M:=\{r,p,s\}} , standing for the "rock", "paper" and "scissors" gestures respectively, and consider the binary operation : M × M M {\displaystyle \cdot :M\times M\to M} {\displaystyle \cdot :M\times M\to M} derived from the rules of the game as follows:[1]

For all x , y M {\displaystyle x,y\in M} {\displaystyle x,y\in M}:
  • If x y {\displaystyle x\neq y} {\displaystyle x\neq y} and x {\displaystyle x} {\displaystyle x} beats y {\displaystyle y} {\displaystyle y} in the game, then x y = y x = x {\displaystyle x\cdot y=y\cdot x=x} {\displaystyle x\cdot y=y\cdot x=x}
  • x x = x {\displaystyle x\cdot x=x} {\displaystyle x\cdot x=x}     I.e. every x {\displaystyle x} {\displaystyle x} is idempotent.
So that for example:
  • r p = p r = p {\displaystyle r\cdot p=p\cdot r=p} {\displaystyle r\cdot p=p\cdot r=p}   "paper beats rock";
  • s s = s {\displaystyle s\cdot s=s} {\displaystyle s\cdot s=s}   "scissors tie with scissors".

This results in the Cayley table:[1]

r p s r r p r p p p s s r s s {\displaystyle {\begin{array}{c|ccc}\cdot &r&p&s\\\hline r&r&p&r\\p&p&p&s\\s&r&s&s\end{array}}} {\displaystyle {\begin{array}{c|ccc}\cdot &r&p&s\\\hline r&r&p&r\\p&p&p&s\\s&r&s&s\end{array}}}

By definition, the magma ( M , ) {\displaystyle (M,\cdot )} {\displaystyle (M,\cdot )} is commutative, but it is also non-associative,[2] as shown by:

r ( p s ) = r s = r {\displaystyle r\cdot (p\cdot s)=r\cdot s=r} {\displaystyle r\cdot (p\cdot s)=r\cdot s=r}

but

( r p ) s = p s = s {\displaystyle (r\cdot p)\cdot s=p\cdot s=s} {\displaystyle (r\cdot p)\cdot s=p\cdot s=s}

i.e.

r ( p s ) ( r p ) s {\displaystyle r\cdot (p\cdot s)\neq (r\cdot p)\cdot s} {\displaystyle r\cdot (p\cdot s)\neq (r\cdot p)\cdot s}

It is the simplest non-associative magma that is conservative, in the sense that the result of any magma operation is one of the two values given as arguments to the operation.[2]

Applications

[edit ]

The arithmetic mean, and generalized means of numbers or of higher-dimensional quantities, such as Frechet means, are often commutative but non-associative.[3]

Commutative but non-associative magmas may be used to analyze genetic recombination.[4]

References

[edit ]
  1. ^ a b Aten, Charlotte (2020), "Multiplayer rock-paper-scissors", Algebra Universalis, 81 (3) 40: Paper No. 40, 31, arXiv:1903.07252 , doi:10.1007/s00012-020-00667-5, MR 4123817
  2. ^ a b Beaudry, Martin; Dubé, Danny; Dubé, Maxime; Latendresse, Mario; Tesson, Pascal (2014), "Conservative groupoids recognize only regular languages", Information and Computation, 239: 13–28, doi:10.1016/j.ic.201408005, MR 3281897
  3. ^ Ginestet, Cedric E.; Simmons, Andrew; Kolaczyk, Eric D. (2012), "Weighted Frechet means as convex combinations in metric spaces: properties and generalized median inequalities", Statistics & Probability Letters, 82 (10): 1859–1863, arXiv:1204.2194 , doi:10.1016/j.spl.201206001, MR 2956628
  4. ^ Etherington, I. M. H. (1941), "Non-associative algebra and the symbolism of genetics", Proceedings of the Royal Society of Edinburgh. Section B. Biology, 61 (1): 24–42, doi:10.1017/s0080455x00011334

AltStyle によって変換されたページ (->オリジナル) /