Jump to content
Wikipedia The Free Encyclopedia

Cauchy problem

From Wikipedia, the free encyclopedia
Class of problems for PDEs
Differential equations
Scope
Classification
Solution
People

A Cauchy problem in mathematics asks for the solution of a partial differential equation that satisfies certain conditions that are given on a hypersurface in the domain.[1] A Cauchy problem can be an initial value problem or a boundary value problem (for this case see also Cauchy boundary condition). It is named after Augustin-Louis Cauchy.

Formal statement

[edit ]

For a partial differential equation defined on Rn+1 and a smooth manifold SRn+1 of dimension n (S is called the Cauchy surface), the Cauchy problem consists of finding the unknown functions u 1 , , u N {\displaystyle u_{1},\dots ,u_{N}} {\displaystyle u_{1},\dots ,u_{N}} of the differential equation with respect to the independent variables t , x 1 , , x n {\displaystyle t,x_{1},\dots ,x_{n}} {\displaystyle t,x_{1},\dots ,x_{n}} that satisfies[2] n i u i t n i = F i ( t , x 1 , , x n , u 1 , , u N , , k u j t k 0 x 1 k 1 x n k n , ) for  i , j = 1 , 2 , , N ; k 0 + k 1 + + k n = k n j ; k 0 < n j {\displaystyle {\begin{aligned}&{\frac {\partial ^{n_{i}}u_{i}}{\partial t^{n_{i}}}}=F_{i}\left(t,x_{1},\dots ,x_{n},u_{1},\dots ,u_{N},\dots ,{\frac {\partial ^{k}u_{j}}{\partial t^{k_{0}}\partial x_{1}^{k_{1}}\dots \partial x_{n}^{k_{n}}}},\dots \right)\\&{\text{for }}i,j=1,2,\dots ,N;,円k_{0}+k_{1}+\dots +k_{n}=k\leq n_{j};,円k_{0}<n_{j}\end{aligned}}} {\displaystyle {\begin{aligned}&{\frac {\partial ^{n_{i}}u_{i}}{\partial t^{n_{i}}}}=F_{i}\left(t,x_{1},\dots ,x_{n},u_{1},\dots ,u_{N},\dots ,{\frac {\partial ^{k}u_{j}}{\partial t^{k_{0}}\partial x_{1}^{k_{1}}\dots \partial x_{n}^{k_{n}}}},\dots \right)\\&{\text{for }}i,j=1,2,\dots ,N;,円k_{0}+k_{1}+\dots +k_{n}=k\leq n_{j};,円k_{0}<n_{j}\end{aligned}}} subject to the condition, for some value t = t 0 {\displaystyle t=t_{0}} {\displaystyle t=t_{0}},

k u i t k = ϕ i ( k ) ( x 1 , , x n ) for  k = 0 , 1 , 2 , , n i 1 {\displaystyle {\frac {\partial ^{k}u_{i}}{\partial t^{k}}}=\phi _{i}^{(k)}(x_{1},\dots ,x_{n})\quad {\text{for }}k=0,1,2,\dots ,n_{i}-1} {\displaystyle {\frac {\partial ^{k}u_{i}}{\partial t^{k}}}=\phi _{i}^{(k)}(x_{1},\dots ,x_{n})\quad {\text{for }}k=0,1,2,\dots ,n_{i}-1}

where ϕ i ( k ) ( x 1 , , x n ) {\displaystyle \phi _{i}^{(k)}(x_{1},\dots ,x_{n})} {\displaystyle \phi _{i}^{(k)}(x_{1},\dots ,x_{n})} are given functions defined on the surface S {\displaystyle S} {\displaystyle S} (collectively known as the Cauchy data of the problem). The derivative of order zero means that the function itself is specified.

Cauchy–Kowalevski theorem

[edit ]

The Cauchy–Kowalevski theorem states that If all the functions F i {\displaystyle F_{i}} {\displaystyle F_{i}} are analytic in some neighborhood of the point ( t 0 , x 1 0 , x 2 0 , , ϕ j , k 0 , k 1 , , k n 0 , ) {\displaystyle (t^{0},x_{1}^{0},x_{2}^{0},\dots ,\phi _{j,k_{0},k_{1},\dots ,k_{n}}^{0},\dots )} {\displaystyle (t^{0},x_{1}^{0},x_{2}^{0},\dots ,\phi _{j,k_{0},k_{1},\dots ,k_{n}}^{0},\dots )}, and if all the functions ϕ j ( k ) {\displaystyle \phi _{j}^{(k)}} {\displaystyle \phi _{j}^{(k)}} are analytic in some neighborhood of the point ( x 1 0 , x 2 0 , , x n 0 ) {\displaystyle (x_{1}^{0},x_{2}^{0},\dots ,x_{n}^{0})} {\displaystyle (x_{1}^{0},x_{2}^{0},\dots ,x_{n}^{0})}, then the Cauchy problem has a unique analytic solution in some neighborhood of the point ( t 0 , x 1 0 , x 2 0 , , x n 0 ) {\displaystyle (t^{0},x_{1}^{0},x_{2}^{0},\dots ,x_{n}^{0})} {\displaystyle (t^{0},x_{1}^{0},x_{2}^{0},\dots ,x_{n}^{0})}.

See also

[edit ]

References

[edit ]
  1. ^ Hadamard, Jacques (1923). Lectures on Cauchy's Problem in Linear Partial Differential Equations. New Haven: Yale University Press. pp. 4–5. OCLC 1880147.
  2. ^ Petrovsky, I. G. (1991) [1954]. Lectures on Partial Differential Equations. Translated by Shenitzer, A. (Dover ed.). New York: Interscience. ISBN 0-486-66902-5.

Further reading

[edit ]
  • Hille, Einar (1956)[1954]. Some Aspect of Cauchy's Problem Proceedings of 1954 ICM vol III section II (analysis half-hour invited address) p. 1 0 9 ~ 1 6.
  • Sigeru Mizohata(溝畑 茂 1965). Lectures on Cauchy Problem. Tata Institute of Fundamental Research.
  • Sigeru Mizohata (1985).On the Cauchy Problem. Notes and Reports in Mathematics in Science and Engineering. 3. Academic Press, Inc.. ISBN 9781483269061
  • Arendt, Wolfgang; Batty, Charles; Hieber, Matthias; Neubrander, Frank (2001), Vector-valued Laplace Transforms and Cauchy Problems, Birkhauser.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /