[フレーム]
1 - 23 件 / 23件
前置き はじめまして, コンポーザー, DJなどをやっているArakurです. 昔は打ち込みジャズを専門で作っていたのですが, ここ最近は殆ど作る機会がなく, 知識やTipsを持て余すくらいなら同志や後進に託そうと思ったので少しずつ記事にしてみることにしました. 第1回は, 古典和声またはポピュラー和声についてある程度知っている方向けにジャズのコード進行の理論の原理的な部分について解説します(第2回が今後書かれるかはまだ分かりません). とりあえずこれを読み切ればそこいらのスタンダードの進行は最低限アナライズできるようになる, という感じの内容を目指しています. 本記事は他ジャンルの制作にあたってジャズの知識を取り入れたいというような層を主に想定しています. 僕自身体系的なジャズ・音楽理論の教育を受けたわけではなく, 知識の大半はネットや古い教則本, およびセッションなどによる実践的経験を
はじめに 本書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 本書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. 本を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<本に記述>である. 作者のページ My HP 本書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ
こんにちは。労働者です。とあるプログラムで学生さんの課題を添削していたら面白い話に出会いました。 僕は今、主に学部生向けのインターン研修的なプログラムでメンターなるものをやっています。メンターとしての仕事は、学生さんの課題へフィードバックを返し、Office Hourというセッションを毎週設けて質問受けやCSに関するトークを行うといった内容になっています。今回話題に取り上げるのはその中の課題の1つ、「行列積のプログラムを書いて時間を計測せよ」という何気ない話で、続く課題たちのいわば前座のようなものです。こういったところに沼は隠されているものですね。 担当している学生さんたちが細かい実験を行ってくれて以下のような疑問が提示されました。 「行列積の計算が N = 1024のときだけ N = 1023, 1025のときに比べて3倍遅いのはなぜ?」 配列のサイズが2のべき乗になるのは避けるべきとい
LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog こんにちは。 LINEのNLP Foundation Devチームの清野舜と高瀬翔とoverlastです。 LINEでは2020年11月から日本語に特化した大規模言語モデル「HyperCLOVA」の構築と応用に関わる研究開発に取り組んできましたが、この「HyperCLOVA」と並行するかたちで複数の大規模言語モデルの研究開発プロジェクトが進行しています。 今回はそれらの研究開発プロジェクトのうち、我々を含むMassive LM開発ユニットから、日本語言語モデル「japanese-large-lm(ジャパニーズ ラージ エルエム)」をOSSとして公開できる状況になりましたので、本ブログを通じてお伝えすることにしました。 この記事
アプリケーションなどOSより上に作られる高水準のプログラムではハードウェアの速度と容量を考慮しない数学的キャッシュアルゴリズムが使われ主にこれを本稿の対象とする。キー探索用マップと明示的キャッシュサイズ(対となる値が保持されているキーのサイズ)は計算量に含まれない。 LRU 最も単純かつ高性能な基礎的キャッシュアルゴリズム。そのため性能比較のベースラインとして常に使用される。逆に言えば実用最低水準の性能である。スキャン耐性皆無でスキャン一発でキャッシュとヒット率がリセットされゼロからやり直しになるため非常に脆く不確実な性能となりベンチマークにおける性能が表面上さほど悪くなく見えても実際の性能はこのような外乱により大きく低下しやすい。このためLRUより高度な主要アルゴリズムはすべて大なり小なりスキャン耐性を備えている。ちなみにプログラミング言語最大のパッケージマネージャであるJavaScri
今回は、何も知らないところからバンディットアルゴリズムを学びました。 シンプルなバンディットアルゴリズムから、各ユーザーごとに最適化するContextual Bandit、順序を最適化するCascading Banditまで解説します。 学んでいて疑問に思ったことを解消しつつ記載しています。 ソースコード https://github.com/birdwatcherYT/bandit 対象読者 バンディットアルゴリズムを理解して実装したい人 ユーザーごとにカスタマイズしたバンディットを理解して実装したい人(Contextual Bandit) 順序を最適化するバンディットを使いたい人(Cascading Bandit) バンディットアルゴリズム バンディットの問題設定を説明します。 スロットマシンN台がある スロットマシンの腕を引くと報酬がもらえる 累積報酬を最大化したい バンディットアル
はじめに 千葉大学/Nospareの米倉です.今回はカルマンフィルターについて解説していきたいと思います. カルマンフィルターで何が出来るの? フィルターとあるように,カルマンフィルターが出来る基本的なことは線形ガウス状態空間モデルのフィルタリング密度を逐次的に求めることです.ここで2つのキーワード,「線形ガウス状態空間モデル」と「フィルタリング密度」という単語が出てきましたので,まずはそれらについて解説します. 線形ガウス状態空間モデルとは 状態空間モデルとは2つの確率過程からなります.1つは潜在変数・状態変数・隠れ変数といわれるもので,これは直接観測できないがマルコフ連鎖に従う変数だとモデリングされます.例えば景気の良し・悪し等,概念として存在するけれど直接は観測できないものを想像してください.2つめは観測値で,これは直接観測できるもの,つまりデータです.ただし変数に依存して観測される
はじめに 現代Webサービスの「推薦システム」基盤 2段階ランキングプロセス ステップ1:候補抽出(First Pass) ステップ2:精密ランキング(Second Pass) モデル評価とA/Bテストサイクル Use Case 1:Netflixのリアルタイム「予測検索」 リアルタイム推薦のインフラストラクチャ Use Case 2:検索と推薦を統合するモデル「UniCoRn」 UniCoRnのポイント 共通モデル化までのプロセス 検索と推薦の比較 統一モデルの実現方法 全体のアーキテクチャ 1. 入力 2. 処理 3. 出力 まとめ はじめに ソーシャル経済メディア「NewsPicks」(Media Experience Unit)でエンジニアをしております小林です! 2024年11月、世界の最先端エンジニアが集うカンファレンス QCon San Francisco 2024 に参加し
What is an Algorithm?An algorithm is a set of rules that takes in one or more inputs, then performs inner calculations and data manipulations and returns an output or a set of outputs. In short, algorithms make life easy. From complex data manipulations and hashes, to simple arithmetic, algorithms follow a set of steps to produce a useful result. One example of an algorithm would be a simple funct
Disclaimer: There are lies, damn lies, and benchmarks from some random person on the internet. If you are considering taking some of the advice in this post please remember to test your specific workloads, which might have different bottlenecks. Also the implementation quality in your particular software stack for your particular hardware matters a lot. For this post I’ll be playing with a ~5 GiB
This is an upcoming high performance computing book titled "Algorithms for Modern Hardware" by Sergey Slotin. Its intended audience is everyone from performance engineers and practical algorithm researchers to undergraduate computer science students who have just finished an advanced algorithms course and want to learn more practical ways to speed up a program than by going from O(nlogn)O(n \log
時系列データのモデリングとして、以下のような手法がメジャーかなと思います。 ARIMA Prophet 状態空間モデル RNN LSTM DeepAR 今回は、2021年に発表された比較的新しい手法であるGreykiteのご紹介をしていきます。 注意:本記事は2022年11月時点の情報をもとに記載しております。ライブラリの変更等により本記事の記載内容が古くなる可能性がありますが、ご了承ください。 Greykiteとは? LinkedInが2021年にOSSとして公開した時系列予測モデルです。機械学習分野の国際会議であるKDD2022でも発表されたようです。 KDD2022よりLinkedInによる時系列予測OSS Greykite (https://t.co/wpsCnuak2t) の紹介論文。コアとなるSilverkiteというアルゴリズムの紹介が中心で解釈可能性と速度が売り。Proph
TL;DR; We are changing std::sort in LLVM’s libcxx. That’s a long story of what it took us to get there and all possible consequences, bugs you might encounter with examples from open source. We provide some benchmarks, perspective, why we did this in the first place and what it cost us with exciting ideas from Hyrum’s Law to reinforcement learning. All changes went into open source and thus I can
Austin Z. Henley Associate Teaching Professor Carnegie Mellon University Challenging algorithms and data structures every programmer should try 12/21/2022 See the discussion of this post on Reddit and Hacker News. Alright, so we are all spending our leisure time reading about algorithms, right? Well, back when I was a student, my algorithms courses regularly put me to sleep. This is unfortunate be
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
I'm very interested in what types of interesting data structures are out there HN. Totally your preference.I'll start: bloom filters. Lets you test if a value is definitely NOT in a list of pre-stored values (or POSSIBLY in a list - with adjustable probability that influences storage of the values.) Good use-case: routing. Say you have a list of 1 million IPs that are black listed. A trivial algor
Inside Spotify’s Recommender System: A Complete Guide to Spotify Recommendation Algorithms This article gets into great detail on how Spotify Recommender System works, outlining the process Spotify recommender follows to understand assets and users on the platform. If you're curious to find out more about how artists and their team can influence the recommender system to optimize algorithmic traff
What the research is: The Ribbon filter is a new data structure that is more space-efficient than the popular Bloom filters that are widely used for optimizing data retrieval. One of the ways that Bloom, and now Ribbon, filters solve real engineering problems is by providing smooth configurability unmatched by other filters. Bloom filters work by overapproximating a set of keys associated with som
解けた喜び、伸びる楽しさ 【非公式】 AtCoder 上の問題について、取組み状況を記録していくサイトです。 各問題が細かく難易度付けされており、必要な知識を段階的に習得できます。
Posted by Sergiu Ciumac on June 12, 2020 · 23 mins read Audio Fingerprinting I have been developing the SoundFingerprinting open source project for the last ten years. One of the questions I often receive is "how does music recognition works?" For the library users, it is somewhat similar to a one-way hash function. You provide a file at the input, and after a certain number of conversions, you ge
Filter data structures over-approximate a set of hashable keys, i.e. set membership queries may incorrectly come out positive. A filter with false positive rate $f \in (0,1]$ is known to require $\ge \log_2(1/f)$ bits per key. At least for larger $f \ge 2^{-4},ドル existing practical filters require a space overhead of at least 20% with respect to this information-theoretic bound. We introduce the Ri
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く