×ばつ強化学習の新しいパラダイム: Agentic RLの研究紹介』へのコメント"> ×ばつ強化学習の新しいパラダイム: Agentic RLの研究紹介』へのコメント">
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
はじめに 本記事では、LLM研究で注目を集めるエージェント型強化学習(Agentic Reinforcement Learning... はじめに 本記事では、LLM研究で注目を集めるエージェント型強化学習(Agentic Reinforcement Learning、Agentic RL)のサーベイ論文 「The Landscape of Agentic Reinforcement Learning for LLMs: A Survey」[1]を読み、私なりの理解と要点を整理して紹介します。500件以上の文献を引用するボリュームのある論文ですが、ここでは重要だと感じたトピックに絞って取り上げます。Agentic RLに興味がある方や、LLMに対する強化学習の最新動向を知りたい方の参考になれば幸いです。 本記事の前提 PPOやGRPOといったRLアルゴリズムの解説は他の多くの記事で既に説明されているため、本記事では割愛します。 DeepSeek-R1[2]の研究を前提とする箇所がいくつかあります。未読の方は原著論文や解説記事