エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
膨大なパラメータを持つ言語モデルであるGPT-3は、学習後にパラメータを更新することなくタスクの情報と... 膨大なパラメータを持つ言語モデルであるGPT-3は、学習後にパラメータを更新することなくタスクの情報と少量のデモンストレーションを入力することで、様々なNLPタスクをこなすことができます。論文のタイトルに含まれる「Few-Shot Learners」というフレーズもこれを意図したものだと言えます。 論文ではZero/One/Few-Shotという概念に触れられていますが、これらの説明が自分の理解していた内容と違っていました。結論から言えば、GPT-3におけるZero/One/Few-Shotと、一般に紹介されている(と思う)Zero/One/Few-Shot learningは大きく異なります。本稿ではGPT-3におけるこれらの説明と、他の資料での説明を比較し内容を整理します。 GPT-3によるマルチタスク処理の仕組み GPT-3がパラメータの更新なしに様々なタスクを処理する仕組み自体は、