エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
はじめに 継続学習(CL;Continual Learning)とは、動的に学習データが変化する環境下において、破壊的... はじめに 継続学習(CL;Continual Learning)とは、動的に学習データが変化する環境下において、破壊的忘却することなくモデルの学習を可能とすることを目的とした機械学習の一分野となります. ※(注記)破壊的忘却とは、単一のネットワークを複数のタスクの学習に利用する場合、過去に学んだタスクに対する精度が、新しいタスクの学習時に悪化する事象のことを指します ICLRやICMLをはじめとしたAI関連のトップカンファレンスにおいても、CLに関する論文の投稿数は増加傾向にあり、注目されている分野といえます. 主にCLは識別モデルの学習という問題設定で議論されることが多いですが、生成モデルをもちいる「異常検知」問題においても適用されます. 今回はCLの問題設定の上で、異常検知に関する手法を提案した論文Continual Learning for Anomaly Detection with Va