エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
下記論文のサーベイ記事です. タイトル: Generative and Discriminative Text Classification with Rec... 下記論文のサーベイ記事です. タイトル: Generative and Discriminative Text Classification with Recurrent Neural Networks Deep Mindの論文 6 Mar 2017 著者: Dani Yogatama, Chris Dyer, Wang Ling, Phil Blunsom 主旨 テキスト分類でデータの傾向が変わっても生成モデルは識別モデルより性能が落ちにくいことを実証. 要約 日常だとデータの傾向は流行によってデータの出現頻度とか変わるし,新たな概念とかもすぐできる. 傾向が変わるたびにデータセットを全て学習しなおすのは時間がかかるので,できれば新たなデータのみで学習させたい.(Continual learning) あと,未知のクラスであっても予測できるようにしたい.(Zero-shot leanin