A direct transformation of a time series can help you exploring your data and creating econometrics models in a blink of an eye. This is because you can use any variation of a time series in your model without having to insert the transformed time series in the spreadsheet. The list of transformations available in the Econometrics Toolbox is:
Exp
2nd_Difference
Power(n)
Log
Returns
Fitted_AR(p)
Sqrt
AccumulatedReturns
Fitted_MA(q)
Normalization
LogReturns
Fitted_ARIMA(p,d,q)
Abs
AccumulatedLogReturns
EWMA(lambda)
Lag
Square
Fitted_Garch(p,q)
Seasonal_Difference
Series-Mean_Squared
Error
1st_Difference
Using a transformation in your time series is just a matter of enclosing the transformation in the variable operators (Y[], X1[], X2[], ... ) . Multiple operators are allowed, just type the transformations followed by a semicolon. Evaluations are made from the left to the right. So, for instance, Y[power(2); exp] will first apply the function f(x) = x^2 to every data x of the series denoted by Y and then apply the function g(f(x)) = exp(f(x)). As you can note, transformations that contain parenthesis need to have the letters enclosed replaced by appropriate parameters.
There is also one special transformation, the "error" transformation. This transformation returns the difference between the original series and the subsequent transformations until its evocation. Therefore, a transformation like Y[power(2); error] returns a transformed series Z = Y - Y^2, where Y is the original series in the spreadsheet.
All transformations are also available through the function "sTimeSeriesTransform" where you can simply type a transformation string — ex: "Y[log;power(2)]" — as one of the function's arguments.
To practice the above concepts a little bit, we are going to build a transformation to explore how the volatility of the following time series of some stock prices behaves, considering the series below:
A
B
C
D
E
F
1
Apple Inc. (Adjusted close price)
2
3
2012年12月31日
71.03051
4
2013年01月02日
73.28087
5
2013年01月03日
72.3559
6
2013年01月04日
70.34045
7
2013年01月07日
69.92669
8
2013年01月08日
70.11489
9
2013年01月09日
69.01907
10
2013年01月10日
69.87463
11
2013年01月11日
69.44619
12
2013年01月14日
66.97025
13
2013年01月15日
64.85737
14
2013年01月16日
67.54952
...
...
...
746
2015年12月11日
112.5692
747
2015年12月14日
111.873
748
2015年12月15日
109.8937
749
2015年12月16日
110.7391
750
2015年12月17日
108.3918
751
2015年12月18日
105.4578
752
2015年12月21日
106.7507
753
2015年12月22日
106.6513
754
2015年12月23日
108.0238
755
2015年12月24日
107.447
756
2015年12月28日
106.2435
757
2015年12月29日
108.1531
758
2015年12月30日
106.7408
759
2015年12月31日
104.6919
760
We need the following chain of transformations: 1o- Transform price to log returns, 2o- Square the returns to get a measure of an instantaneous volatility, 3o smooth the volatility using the exponential weighted moving average model.
For the first transformation, we can use directly the "LogReturns" transformation or the pair 1st_Difference;Log. The second transformation can be done by the power(2) transformation or to be picky with volatility definition we can use the "Series-Mean_Squared" (the mean of logreturns is very close to zero for daily returns). Now, to smooth the results, we can apply an EWMA model with a decaying factor of 0.95, that is, use the transformation "EWMA(0.95)". Putting it all together, we come to the following transformation string: Y[LogReturns;Power(2);EWMA(0.95)]. The screenshot of insertion box and the result is displayed below:
And double clicking the chart to expand it:As a final remark, please note that when you have only one time series the explicitness of the operator Y[] is not necessary. Besides, the command window is not case sensitive. So, typing "Power" and "POWER" will lead to the same results.