This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1;80(3):ujae069.
doi: 10.1093/biomtc/ujae069.

Propensity weighting plus adjustment in proportional hazards model is not doubly robust

Affiliations

Propensity weighting plus adjustment in proportional hazards model is not doubly robust

Erin E Gabriel et al. Biometrics. .

Erratum in

Abstract

Recently, it has become common for applied works to combine commonly used survival analysis modeling methods, such as the multivariable Cox model and propensity score weighting, with the intention of forming a doubly robust estimator of an exposure effect hazard ratio that is unbiased in large samples when either the Cox model or the propensity score model is correctly specified. This combination does not, in general, produce a doubly robust estimator, even after regression standardization, when there is truly a causal effect. We demonstrate via simulation this lack of double robustness for the semiparametric Cox model, the Weibull proportional hazards model, and a simple proportional hazards flexible parametric model, with both the latter models fit via maximum likelihood. We provide a novel proof that the combination of propensity score weighting and a proportional hazards survival model, fit either via full or partial likelihood, is consistent under the null of no causal effect of the exposure on the outcome under particular censoring mechanisms if either the propensity score or the outcome model is correctly specified and contains all confounders. Given our results suggesting that double robustness only exists under the null, we outline 2 simple alternative estimators that are doubly robust for the survival difference at a given time point (in the above sense), provided the censoring mechanism can be correctly modeled, and one doubly robust method of estimation for the full survival curve. We provide R code to use these estimators for estimation and inference in the supporting information.

Keywords: Cox model; causal inference; double robustness; inverse probability of treatment weighting; parametric proportional hazards.

PubMed Disclaimer

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /