Dissociating language and thought in large language models
- PMID: 38508911
- PMCID: PMC11416727
- DOI: 10.1016/j.tics.2024年01月01日1
Dissociating language and thought in large language models
Abstract
Large language models (LLMs) have come closest among all models to date to mastering human language, yet opinions about their linguistic and cognitive capabilities remain split. Here, we evaluate LLMs using a distinction between formal linguistic competence (knowledge of linguistic rules and patterns) and functional linguistic competence (understanding and using language in the world). We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms. Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty and often requires specialized fine-tuning and/or coupling with external modules. We posit that models that use language in human-like ways would need to master both of these competence types, which, in turn, could require the emergence of separate mechanisms specialized for formal versus functional linguistic competence.
Keywords: cognitive neuroscience; computational modeling; language and thought; large language models; linguistic competence.
Copyright © 2024 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no conflicts of interest.
Figures
References
-
- Turing AM. Computing Machinery and Intelligence. Mind, 59(October):433–60, 1950. Publisher: Oxford University Press.
-
- Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, Chen H, Yi X, Wang C, Wang Y, et al. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology, 2023.
-
- Bommasani R, Klyman K, Longpre S, Kapoor S, Maslej N, Xiong B, Zhang D, and Liang P. The foundation model transparency index. arXiv preprint arXiv:2310.12941, 2023.
-
- Wang A, Pruksachatkun Y, Nangia N, Singh A, Michael J, Hill F, Levy O, and Bowman SR. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. In 33rd Conference on Neural Information Processing Systems, 2019.
-
- Srivastava A, Rastogi A, Rao A, Shoeb AAM, Abid A, Fisch A, Brown AR, Santoro A, Gupta A, Garriga-Alonso A, Kluska A, Lewkowycz A, Agarwal A, Power A, Ray A, Warstadt A, Kocurek AW, Safaya A, Tazarv A, Xiang A, Parrish A, Nie A, Hussain A, Askell A, Dsouza A, Slone A, Rahane A, Iyer AS, Andreassen AJ, Madotto A, Santilli A, Stuhlmüller A, Dai AM, La A, Lampinen A, Zou A, Jiang A, Chen A, Vuong A, Gupta A, Gottardi A, Norelli A, Venkatesh A, Gholamidavoodi A, Tabassum A, Menezes A, Kirubarajan A, Mullokandov A, Sabharwal A, Herrick A, Efrat A, Erdem A, Karakaş A, Roberts BR, Loe BS, Zoph B, Bojanowski B, Özyurt B, Hedayatnia B, Neyshabur B, Inden B, Stein B, Ekmekci B, Lin BY, Howald B, Orinion B, Diao C, Dour C, Stinson C, Argueta C, Ferri C, Singh C, Rathkopf C, Meng C, Baral C, Wu C, Callison-Burch C, Waites C, Voigt C, Manning CD, Potts C, Ramirez C, Rivera CE, Siro C, Raffel C, Ashcraft C, Garbacea C, Sileo D, Garrette D, Hendrycks D, Kilman D, Roth D, Freeman CD, Khashabi D, Levy D, González DM, Perszyk D, Hernandez D, Chen D, Ippolito D, Gilboa D, Dohan D, Drakard D, Jurgens D, Datta D, Ganguli D, Emelin D, Kleyko D, Yuret D, Chen D, Tam D, Hupkes D, Misra D, Buzan D, Mollo DC, Yang D, Lee D-H, Schrader D, Shutova E, Cubuk ED, Segal E, Hagerman E, Barnes E, Donoway E, Pavlick E, Rodolà E, Lam E, Chu E, Tang E, Erdem E, Chang E, Chi EA, Dyer E, Jerzak E, Kim E, Manyasi EE, Zheltonozhskii E, Xia F, Siar F, Martínez-Plumed F, Happé F, Chollet F, Rong F, Mishra G, Winata GI, de Melo G, Kruszewski G, Parascandolo G, Mariani G, Wang GX, Jaimovitch-Lopez G, Betz G, Gur-Ari G, Galijasevic H, Kim H, Rashkin H, Hajishirzi H, Mehta H, Bogar H, Shevlin HFA, Schuetze H, Yakura H, Zhang H, Wong HM, Ng I, Noble I, Jumelet J, Geissinger J, Kernion J, Hilton J, Lee J, Fisac JF, Simon JB, Koppel J, Zheng J, Zou J, Kocon J, Thompson J, Wingfield J, Kaplan J, Radom J, Sohl-Dickstein J, Phang J, Wei J, Yosinski J, Novikova J, Bosscher J, Marsh J, Kim J, Taal J, Engel J, Alabi J, Xu J, Song J, Tang J, Waweru J, Burden J, Miller J, Balis JU, Batchelder J, Berant J, Frohberg J, Rozen J, Hernandez-Orallo J, Boudeman J, Guerr J, Jones J, Tenenbaum JB, Rule JS, Chua J, Kanclerz K, Livescu K, Krauth K, Gopalakrishnan K, Ignatyeva K, Markert K, Dhole K, Gimpel K, Omondi K, Mathewson KW, Chiafullo K, Shkaruta K, Shridhar K, McDonell K, Richardson K, Reynolds L, Gao L, Zhang L, Dugan L, Qin L, Contreras-Ochando L, Morency L-P, Moschella L, Lam L, Noble L, Schmidt L, He L, Oliveros-Colón L, Metz L, Senel LK, Bosma M, Sap M, Hoeve MT, Farooqi M, Faruqui M, Mazeika M, Baturan M, Marelli M, Maru M, Ramirez-Quintana MJ, Tolkiehn M, Giulianelli M, Lewis M, Potthast M, Leavitt ML, Hagen M, Schubert M, Baitemirova MO, Arnaud M, McElrath M, Yee MA, Cohen M, Gu M, Ivanitskiy M, Starritt M, Strube M, Swędrowski M, Bevilacqua M, Yasunaga M, Kale M, Cain M, Xu M, Suzgun M, Walker M, Tiwari M, Bansal M, Aminnaseri M, Geva M, Gheini M, T MV, Peng N, Chi NA, Lee N, Krakover NG-A, Cameron N, Roberts N, Doiron N, Martinez N, Nangia N, Deckers N, Muennighoff N, Keskar NS, Iyer NS, Constant N, Fiedel N, Wen N, Zhang O, Agha O, Elbaghdadi O, Levy O, Evans O, Casares PAM, Doshi P, Fung P, Liang PP, Vicol P, Alipoormolabashi P, Liao P, Liang P, Chang PW, Eckersley P, Htut PM, Hwang P, Miłkowski P, Patil P, Pezeshkpour P, Oli P, Mei Q, Lyu Q, Chen Q, Banjade R, Rudolph RE, Gabriel R, Habacker R, Risco R, Millière R, Garg R, Barnes R, Saurous RA, Arakawa R, Raymaekers R, Frank R, Sikand R, Novak R, Sitelew R, Bras RL, Liu R, Jacobs R, Zhang R, Salakhutdinov R, Chi RA, Lee SR, Stovall R, Teehan R, Yang R, Singh S, Mohammad SM, Anand S, Dillavou S, Shleifer S, Wiseman S, Gruetter S, Bowman SR, Schoenholz SS, Han S, Kwatra S, Rous SA, Ghazarian S, Ghosh S, Casey S, Bischoff S, Gehrmann S, Schuster S, Sadeghi S, Hamdan S, Zhou S, Srivastava S, Shi S, Singh S, Asaadi S, Gu SS, Pachchigar S, Toshniwal S, Upadhyay S, Debnath SS, Shakeri S, Thormeyer S, Melzi S, Reddy S, Makini SP, Lee S-H, Torene S, Hatwar S, Dehaene S, Divic S, Ermon S, Biderman S, Lin S, Prasad S, Piantadosi S, Shieber S, Misherghi S, Kiritchenko S, Mishra S, Linzen T, Schuster T, Li T, Yu T, Ali T, Hashimoto T, Wu T-L, Desbordes T, Rothschild T, Phan T, Wang T, Nkinyili T, Schick T, Kornev T, Tunduny T, Gerstenberg T, Chang T, Neeraj T, Khot T, Shultz T, Shaham U, Misra V, Demberg V, Nyamai V, Raunak V, Ramasesh VV, prabhu vinay uday, Padmakumar V, Srikumar V, Fedus W, Saunders W, Zhang W, Vossen W, Ren X, Tong X, Zhao X, Wu X, Shen X, Yaghoobzadeh Y, Lakretz Y, Song Y, Bahri Y, Choi Y, Yang Y, Hao Y, Chen Y, Belinkov Y, Hou Y, Hou Y, Bai Y, Seid Z, Zhao Z, Wang Z, Wang ZJ, Wang Z, and Wu Z. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. Transactions on Machine Learning Research, 2023.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources