This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 15;17(1):196.
doi: 10.1186/s12936-018-2349-7.

hmmIBD: software to infer pairwise identity by descent between haploid genotypes

Affiliations

hmmIBD: software to infer pairwise identity by descent between haploid genotypes

Stephen F Schaffner et al. Malar J. .

Abstract

Background: A number of recent malaria studies have used identity by descent (IBD) to study epidemiological processes relevant to malaria control. In this paper, a software package, hmmIBD, is introduced for estimating pairwise IBD between haploid genomes, such as those of the malaria parasite, sampled from one or two populations. Source code is freely available.

Methods: The performance of hmmIBD was verified using simulated data and benchmarked against an existing method for detecting IBD within populations. Code for all tests is freely available. The utility of hmmIBD for detecting IBD across populations was demonstrated using Plasmodium falciparum data from Cambodia and Ghana.

Results: Alongside an existing method, hmmIBD was highly accurate, sensitive and specific. It is fast, requiring only 70 s on average to analyse 50 whole genome sequences on a laptop computer, and scales linearly in the number of pairwise comparisons. Treatment of different populations under hmmIBD improves detection of IBD across populations.

Conclusion: Fast and accurate software for detecting IBD in malaria parasite genetic data sampled from one or two populations is presented. The latter will likely be a useful feature for malaria elimination efforts, since it could facilitate identification of imported malaria cases. Software is robust to possible misspecification of the genotyping error and the recombination rate. However, exclusion of data in regions whose rates vary greatly from their genome-wide average is recommended.

Keywords: Haploid; Hidden Markov model; Identity by descent; Malaria; Plasmodium falciparum.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The fraction of sample pairs that are IBD along chromosome 7, where one sample is from Ghana and the other from Cambodia. Blue curve: IBD as reconstructed by hmmIBD correctly treating the samples as coming from two populations; red curve: IBD as reconstructed from a single, averaged population. (See Additional file 2 for details.)

References

    1. Thompson EA. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics. 2013;194:301–326. doi: 10.1534/genetics.112.148825. - DOI - PMC - PubMed
    1. Browning SR, Browning BL. Identity by descent between distant relatives: detection and applications. Annu Rev Genet. 2012;46:617–633. doi: 10.1146/annurev-genet-110711-155534. - DOI - PubMed
    1. Daniels RF, Schaffner SF, Wenger EA, Proctor JL, Chang H-H, Wong W, et al. Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci USA. 2015;112:7067–7072. doi: 10.1073/pnas.1505691112. - DOI - PMC - PubMed
    1. Wong W, Griggs AD, Daniels RF, Schaffner SF, Ndiaye D, Bei AK, et al. Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Med. 2017;9:5. doi: 10.1186/s13073-017-0398-0. - DOI - PMC - PubMed
    1. Henden L, Lee S, Mueller I, Barry A, Bahlo M. Detecting selection signals in Plasmodium falciparum using identity-by-descent analysis. Preprint. bioRxiv. 2016. 10.1101/088039. Posted 16 November 2016.
Cite

AltStyle によって変換されたページ (->オリジナル) /