Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests
- PMID: 29579040
- PMCID: PMC5892944
- DOI: 10.1371/journal.pntd.0006366
Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests
Abstract
As the most widespread tick-borne arbovirus causing infections in numerous countries in Asia, Africa and Europe, Crimean-Congo Hemorrhagic Fever Virus (CCHFV, family Nairoviridae) was included in the WHO priority list of emerging pathogens needing urgent Research & Development attention. To ensure preparedness for potential future outbreak scenarios, reliable diagnostic tools for identification of acute cases as well as for performance of seroprevalence studies are necessary. Here, the CCHFV ortholog of the major bunyavirus antigen, the nucleoprotein (NP), was recombinantly expressed in E.coli, purified and directly labeled with horseradish peroxidase (HRP). Employing this antigen, two serological tests, a μ-capture ELISA for the detection of CCHFV-specific IgM antibodies (BLACKBOX CCHFV IgM) and an IgG immune complex (IC) ELISA for the detection of CCHFV-specific IgG antibodies (BLACKBOX CCHFV IgG), were developed. Test performance was evaluated and compared with both in-house gold standard testing by IgM/IgG indirect immunofluorescence (IIF) and commercially available ELISA tests (VectoCrimean-CHF-IgM/IgG, Vector-Best, Russia) using a serum panel comprising paired samples collected in Kosovo during the years 2013-2016 from 15 patients with an acute, RT-PCR-confirmed CCHFV infection, and 12 follow-up sera of the same patients collected approximately one year after having overcome the infection. Reliably detecting IgM antibodies in all acute phase sera collected later than day 4 after onset of symptoms, both IgM ELISAs displayed excellent diagnostic and analytical sensitivity (100%, 95% confidence interval (CI): 85.2%-100.0%). While both IgG ELISAs readily detected the high IgG titers present in convalescent patients approximately one year after having overcome the infection (sensitivity 100%, 95% CI: 73.5%-100.0%), the newly developed BLACKBOX CCHFV IgG ELISA was superior to the commercial IgG ELISA in detecting the rising IgG titers during the acute phase of the disease. While all samples collected between day 11 and 19 after onset of symptoms tested positive in both the in-house gold standard IIFT and the BLACKBOX CCHFV IgG ELISA (sensitivity 100%, 95% CI: 71.5%-100.0%), only 27% (95% CI: 6.0%-61.0%) of those samples were tested positive in the commercial IgG ELISA. No false positive signals were observed in either IgM/IgG ELISA when analyzing a priori CCHFV IgM/IgG negative serum samples from healthy blood donors, malaria patients and flavivirus infected patients as well as CCHFV IgM/IgG IIFT negative serum samples from healthy Kosovar blood donors (for BLACKBOX CCHFV IgM/IgG: n = 218, 100% specificity, 95% CI: 98.3%-100.0%, for VectoCrimean-CHF-IgM/IgG: n = 113, 100% specificity, 95% CI: 96.8%-100.0%).
Conflict of interest statement
I have read the journal's policy and the authors of this manuscript have the following competing interests: PE and HS are inventors of the IgG immune complex technology employing recombinant CD32 which is protected by European (EP2492689) and international (CN103460048, HK1192320, CA2823107, US2014080120) patents owned by the Bernhard Nocht Institute for Tropical Medicine (BNITM).
Figures
References
-
- Leblebicioglu H, Ozaras R, Irmak H, Sencan I (2016) Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res 126: 21–34. doi: 10.1016/j.antiviral.201512003 - DOI - PubMed
-
- Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, et al. (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch Virol 162: 2505–2538. doi: 10.1007/s00705-017-3358-5 - DOI - PubMed
-
- Vanhomwegen J, Alves MJ, Zupanc TA, Bino S, Chinikar S, et al. (2012) Diagnostic assays for Crimean-Congo hemorrhagic fever. Emerg Infect Dis 18: 1958–1965. doi: 10.3201/eid1812.120710 - DOI - PMC - PubMed
-
- Ergonul O (2012) Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2: 215–220. doi: 10.1016/j.coviro.201203001 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous