This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Population-Based Surveillance of Birth Defects Potentially Related to Zika Virus Infection - 15 States and U.S. Territories, 2016

Augustina Delaney et al. MMWR Morb Mortal Wkly Rep. .

Abstract

Zika virus infection during pregnancy can cause serious birth defects, including microcephaly and brain abnormalities (1). Population-based birth defects surveillance systems are critical to monitor all infants and fetuses with birth defects potentially related to Zika virus infection, regardless of known exposure or laboratory evidence of Zika virus infection during pregnancy. CDC analyzed data from 15 U.S. jurisdictions conducting population-based surveillance for birth defects potentially related to Zika virus infection.* Jurisdictions were stratified into the following three groups: those with 1) documented local transmission of Zika virus during 2016; 2) one or more cases of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents; and 3) less than one case of confirmed, symptomatic, travel-associated Zika virus disease reported to CDC per 100,000 residents. A total of 2,962 infants and fetuses (3.0 per 1,000 live births; 95% confidence interval [CI] = 2.9-3.2) (2) met the case definition. In areas with local transmission there was a non-statistically significant increase in total birth defects potentially related to Zika virus infection from 2.8 cases per 1,000 live births in the first half of 2016 to 3.0 cases in the second half (p = 0.10). However, when neural tube defects and other early brain malformations (NTDs)§ were excluded, the prevalence of birth defects strongly linked to congenital Zika virus infection increased significantly, from 2.0 cases per 1,000 live births in the first half of 2016 to 2.4 cases in the second half, an increase of 29 more cases than expected (p = 0.009). These findings underscore the importance of surveillance for birth defects potentially related to Zika virus infection and the need for continued monitoring in areas at risk for Zika.

PubMed Disclaimer

Conflict of interest statement

No conflicts of interest were reported.

Figures

FIGURE 1
FIGURE 1
Prevalence of birth defects cases potentially related to Zika virus infection, by Zika virus transmission characteristics and quarter —15 U.S. jurisdictions, 2016,†,§ * Local transmission jurisdictions included Florida (selected southern counties), Puerto Rico, and Texas (Public Health Region 11). Higher travel-related Zika prevalence jurisdictions had one or more case of confirmed symptomatic travel-associated Zika virus disease reported to CDC per 100,000 residents. These jurisdictions included Georgia (selected metropolitan Atlanta counties), Massachusetts, New Jersey, New York (excluding New York City), Rhode Island, South Carolina, Texas (Public Health Regions 1, 3, and 9), and Vermont. § Low or no travel-related Zika prevalence jurisdictions had less than one case of confirmed symptomatic travel-associated Zika virus disease reported to CDC per 100,000 residents. These jurisdictions included Hawaii, Illinois, Iowa, North Carolina (selected regions), and Utah.
FIGURE 2
FIGURE 2
Prevalence of birth defects cases potentially related to Zika virus infection in U.S. jurisdictions with documented local transmission of Zika virus, by defect type and quarter, 2016 *Fetuses and infants were aggregated into the following four mutually exclusive categories: those with 1) brain abnormalities with or without microcephaly (head circumference at delivery <3rd percentile for sex and gestational age); 2) NTDs and other early brain malformations; 3) eye abnormalities among those without mention of a brain abnormality included in the first two categories; and 4) other consequences of central nervous system dysfunction, specifically joint contractures and congenital sensorineural deafness, among those without mention of brain or eye abnormalities included in another category. Jurisdictions with local transmission of Zika virus included Florida (selected southern counties), Puerto Rico, and Texas (Public Health Region 11).

References

    1. Moore CA, Staples JE, Dobyns WB, et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 2017;171:288–95. 10.1001/jamapediatrics.2016.3982 - DOI - PMC - PubMed
    1. Honein MA, Dawson AL, Petersen EE, et al.; US Zika Pregnancy Registry Collaboration. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA 2017;317:59–68. 10.1001/jama.2016.19006 - DOI - PubMed
    1. CDC. Zika virus: 2016 cases counts in the US. Laboratory-confirmed symptomatic Zika virus disease cases and presumptive viremic blood donors reported to ArboNET by states and territories—United States, 2016. Atlanta, GA: US Department of Health and Human Services, CDC; 2017. https://www.cdc.gov/zika/reporting/2016-case-counts.html
    1. Cuevas EL, Tong VT, Rozo N, et al. Preliminary report of microcephaly potentially associated with Zika virus infection during pregnancy—Colombia, January–November 2016. MMWR Morb Mortal Wkly Rep 2016;65:1409–13. 10.15585/mmwr.mm6549e1 - DOI - PubMed
    1. Lozier M, Adams L, Febo MF, et al. Incidence of Zika virus disease by age and sex—Puerto Rico, November 1, 2015–October 20, 2016. MMWR Morb Mortal Wkly Rep 2016;65:1219–23. 10.15585/mmwr.mm6544a4 - DOI - PubMed
Cite

AltStyle によって変換されたページ (->オリジナル) /