This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 21;11(8):e0005833.
doi: 10.1371/journal.pntd.0005833. eCollection 2017 Aug.

Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea

Affiliations

Candidate gene polymorphisms study between human African trypanosomiasis clinical phenotypes in Guinea

Justin Windingoudi Kaboré et al. PLoS Negl Trop Dis. .

Abstract

Background: Human African trypanosomiasis (HAT), a lethal disease induced by Trypanosoma brucei gambiense, has a range of clinical outcomes in its human host in West Africa: an acute form progressing rapidly to second stage, spontaneous self-cure and individuals able to regulate parasitaemia at very low levels, have all been reported from endemic foci. In order to test if this clinical diversity is influenced by host genetic determinants, the association between candidate gene polymorphisms and HAT outcome was investigated in populations from HAT active foci in Guinea.

Methodology and results: Samples were collected from 425 individuals; comprising of 232 HAT cases, 79 subjects with long lasting positive and specific serology but negative parasitology and 114 endemic controls. Genotypes of 28 SNPs in eight genes passed quality control and were used for an association analysis. IL6 rs1818879 allele A (p = 0.0001, OR = 0.39, CI95 = [0.24-0.63], BONF = 0.0034) was associated with a lower risk of progressing from latent infection to active disease. MIF rs36086171 allele G seemed to be associated with an increased risk (p = 0.0239, OR = 1.65, CI95 = [1.07-2.53], BONF = 0.6697) but did not remain significant after Bonferroni correction. Similarly MIF rs12483859 C allele seems be associated with latent infections (p = 0.0077, OR = 1.86, CI95 = [1.18-2.95], BONF = 0.2157). We confirmed earlier observations that APOL1 G2 allele (DEL) (p = 0.0011, OR = 2.70, CI95 = [1.49-4.91], BONF = 0.0301) is associated with a higher risk and APOL1 G1 polymorphism (p = 0.0005, OR = 0.45, CI95 = [0.29-0.70], BONF = 0.0129) with a lower risk of developing HAT. No associations were found with other candidate genes.

Conclusion: Our data show that host genes are involved in modulating Trypanosoma brucei gambiense infection outcome in infected individuals from Guinea with IL6 rs1818879 being associated with a lower risk of progressing to active HAT. These results enhance our understanding of host-parasite interactions and, ultimately, may lead to the development of new control tools.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Schematic of single nucleotide polymorphisms of Interleukin-6 selected from 2,000bp up and downstream (5’ and 3’) of the transcript region.

References

    1. Camara M, Kaba D, KagbaDouno M, Sanon JR, Ouendeno FF, et al. (2005) [Human African trypanosomiasis in the mangrove forest in Guinea: epidemiological and clinical features in two adjacent outbreak areas]. Med Trop (Mars) 65: 155–161. - PubMed
    1. Simarro PP, Diarra A, Ruiz Postigo JA, Franco JR, Jannin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007 doi: 10.1371/journal.pntd.0001007 - DOI - PMC - PubMed
    1. Kagbadouno MS, Camara M, Rouamba J, Rayaisse JB, Traore IS, et al. (2012) Epidemiology of sleeping sickness in Boffa (Guinea): where are the trypanosomes? PLoS Negl Trop Dis 6: e1949 doi: 10.1371/journal.pntd.0001949 - DOI - PMC - PubMed
    1. Ilboudo H, Jamonneau V, Camara M, Camara O, Dama E, et al. (2011) Diversity of response to Trypanosoma brucei gambiense infections in the Forecariah mangrove focus (Guinea): perspectives for a better control of sleeping sickness. Microbes Infect 13: 943–952. doi: 10.1016/j.micinf.201105007 - DOI - PubMed
    1. Checchi F, Filipe JA, Barrett MP, Chandramohan D (2008) The natural progression of Gambiense sleeping sickness: what is the evidence? PLoS Negl Trop Dis 2: e303 doi: 10.1371/journal.pntd.0000303 - DOI - PMC - PubMed

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /