This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 8;10(4):e0004565.
doi: 10.1371/journal.pntd.0004565. eCollection 2016 Apr.

A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia

Affiliations

A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia

Kavi Ratanabanangkoon et al. PLoS Negl Trop Dis. .

Abstract

Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (polyspecific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a 'pan-specific' AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide paraspecificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund's adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen, satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide paraspecificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. SDS-PAGE of standard protein markers (Lane A), crude venom (Lane B) and TF (Lane C) of N. kaouthia (Thailand) venom.
The scanning of each gel lane is shown together with the relative protein abundance estimated from the intensity of the band.
Fig 2
Fig 2. Venomics of Naja kaouthia (Vietnam) venom and TF under RP-HPLC.

References

    1. Chippaux JP. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon. 2011. March 15;57(4):586–99. 10.1016/j.toxicon.2010年12月02日2 - DOI - PubMed
    1. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 2009;3(12):e569 10.1371/journal.pntd.0000569 - DOI - PMC - PubMed
    1. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008. November 4;5(11):e218 10.1371/journal.pmed.0050218 - DOI - PMC - PubMed
    1. Fox S, Rathuwithana AC, Kasturiratne A, Lalloo DG, de Silva HJ. Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka. Trans R Soc Trop Med Hyg. 2006. July;100(7):693–5. - PubMed
    1. Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis. 2011;5(4):e1018 10.1371/journal.pntd.0001018 - DOI - PMC - PubMed

Publication types

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /