This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec 1:8:610.
doi: 10.1186/s13071-015-1230-6.

Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia

Affiliations

Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia

Gordana Rašić et al. Parasit Vectors. .

Abstract

Background: Dengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks.

Methods: We used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure.

Results: We found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R(2) test statistic (R(2) = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion.

Conclusion: We report the first insights into the spatio-temporal genetic structure and the underlying processes in the dengue fever mosquito from Yogyakarta, Indonesia. Our results provide valuable information on the effectiveness of local control measures as well as guidelines for the implementation of novel biocontrol strategies such as release of Wolbachia-infected mosquitoes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Collection sites in Yogyakarta region in central Java, Indonesia. Aedes aegypti adults and larvae were sampled in the wet season in 2011 and in the following dry season in 2012. The inner city area (with sites 11–13) is delineated with a border line
Fig. 2
Fig. 2
Discriminant analysis of principal components (DAPC) for Aedes aegypti from Yogyakarta, Indonesia. Individual larvae collected across hamlets and inner city sites were genotyped at nuclear genome-wide SNPs (upper) and microsatellites (lower). Scatterplots with individuals (dots) from different sites labeled with different colors is on the left. Membership probabilities to the three derived genetic groups for individuals (vertical lines) collected at different sites is on the right
Fig. 3
Fig. 3
Spatial autocorrelation analysis for Aedes aegypti larvae collected in the dry season. Larvae were genotyped at 3,178 SNPs. Upper (U) and lower (L) bounds for the non-significant autocorrelation coefficient (r) were determined using 999 permutations
Fig. 4
Fig. 4
Haplotype networks depicting spatial variation of mitochondrial haplotypes. Aedes aegypti samples were collected at 5 hamlets (sites 2,3,6–8) and 3 inner city sites (11–13) in Yogyakarta, Indonesia. Dotted vertical lines connect identical haplotypes found at different sites. Ellipse size corresponds to the number of individuals with a given haplotype. A number within an ellipse denominates the specific haplotype (1–22)
Fig. 5
Fig. 5
Haplotype network depicting total variation of mitochondrial haplotypes in Aedes aegypti from Yogyakarta. A number within an ellipse designates a specific haplotype (1–22), with the ellipse size proportional to the number of individuals with a given haplotype

References

    1. World Health Organization. Dengue and severe dengue. WHO Fact Sheet 2012:1–4.
    1. Karyanti MR, Uiterwaal CS, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, et al. The changing incidence of Dengue Haemorrhagic Fever in Indonesia: a 45-year registry-based analysis. BMC Infect Dis. 2014;14:412. doi: 10.1186/1471-2334-14-412. - DOI - PMC - PubMed
    1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12 Suppl):S7–16. doi: 10.1038/nrmicro2460. - DOI - PMC - PubMed
    1. Harrington LC, Edman JD, Scott TW. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol. 2001;38:411–22. doi: 10.1603/0022-2585-38.3.411. - DOI - PubMed
    1. Scott TW, Naksathit A, Day JF, Kittayapong P, Edman JD. A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. Am J Trop Med Hyg. 1997;57:235–9. - PubMed

Publication types

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /