This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan 29:8:63.
doi: 10.1186/s13071-014-0517-3.

Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus

Affiliations

Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus

Naseh Maleki-Ravasan et al. Parasit Vectors. .

Abstract

Background: Identification of the microflora of the sand fly gut and the environmental distribution of these bacteria are important components for paratransgenic control of Leishmania transmission by sand flies.

Methods: Biotic and abiotic bacterial communities of four compartments of a hyper-endemic focus of Zoonotic Cutaneous Leishmaniasis (ZCL) were investigated using 16S ribosomal DNA sequencing and phylogenetic tree construction. These compartments include Phlebotomus papatasi's gut, skin and intestinal tract of great gerbil Rhombomys opimus, the gerbil nest supplies, and plant food sources of the vectors and reservoirs.

Results: Sequence homology analysis using nine available 16S rDNA data bases revealed 40, 24, 15 and 14 aerobic bacterial species from the vector guts, the gerbil bodies, the gerbil nests, and the plants, respectively. The isolated bacteria belong to wide ranges including aerobic to facultative anaerobic, pathogen to commensals, sand fly oviposition inducers, land to air and ocean habitats, animal and human probiotics, and plant growth-promoting rhizobacteria. Matching data analysis suggested that the adult P. papatasi gut bacteria could be acquired from three routes, adult sugar feeding on the plant saps, adult blood feeding on the animal host, and larval feeding from nest supplies. However, our laboratory experiment showed that none of the bacteria of the reservoir skin was transmitted to female sand fly guts via blood feeding. The microflora of sand fly guts were associated with the sand fly environment in which the predominant bacteria were Microbacterium, Pseudomonas, and Staphylococcus in human dwellings, cattle farms, and rodent colonies, respectively. Staphylococcus aureus was the most common bacterium in sand fly guts. Presence of some sand fly ovipoisition inducers such Bacillus spp. and Staphylococcus saprophyticus support association between gut flora and oviposition induction.

Conclusions: Results of this study showed that Bacillus subtilis and Enterobacter cloacae particularly subsp. dissolvens are circulated among the sand fly guts, the plants, and the sand fly larval breeding places and hence are possible candidates for a paratransgenic approach to reduce Leishmania transmission.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Map of study area in the hyperendemic ZCL focus of Isfahan province, central of Iran. Locations are, A: Abbas Abad (Badrood), P: Parvaneh (Habibabad), S: Sejzi and V: Varzaneh. Solid dot: Isfahan city.
Figure 2
Figure 2
Phylogenetic relationship of the bacteria isolated from the partners of the ZCL Hyper-endemic focus of Isfahan province, Iran. Common and similar colors point out groups, complexes and close relatives. Solid and hollow signs represent the source of isolation and numbers around circles indicate bacterial phyla. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. Numbers at the nodes indicate percent bootstrap values (1000 replicates).
Figure 3
Figure 3
Categorization and relative abundance of the identified isolated bacteria from the partners of the ZCL Hyper-endemic focus of Isfahan province, Iran. Pseudomonas geniculata isolates are grouped with Genus Stenotrophomonas.
Figure 4
Figure 4
Natural circulations of bacteria among the partners of ZCL focus in Isfahan, Iran. Operators P. papatasi, R. opimus and plant food sources (Hyloxylon and Salsola) indicated by graphics. One or two way arrows show how the bacteria are acquired and circulated. Continuous and non-continuous lines represent proved and doubtful transmission routes respectively. Bacteria phyla engrave close to the isolated source.

References

    1. Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276. doi: 10.1186/1756-3305年5月27日6. - DOI - PMC - PubMed
    1. WHO: Fact sheet n° 375. 2014. updated January 2014 [http://www.who.int/mediacentre/factsheets/fs375/en/]
    1. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–318. doi: 10.1016/j.cimid.200403004. - DOI - PubMed
    1. Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. 2005;35:1169–1180. doi: 10.1016/j.ijpara.200507001. - DOI - PubMed
    1. Hajjaran H, Mohebali M, Mamishi S, Vasigheh F, Oshaghi MA, Naddaf SR, Teimouri A, Edrissian GH, Zarei Z. Molecular identification and polymorphism determination of cutaneous and visceral leishmaniasis agents isolated from human and animal hosts in Iran. Biomed Res Int. 2013;2013:789326. doi: 10.1155/2013/789326. - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /