This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 21:7:336.
doi: 10.1186/1756-3305-7-336.

Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi

Affiliations

Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi

Deepak Joshi et al. Parasit Vectors. .

Abstract

Background: Wolbachia is a maternally transmitted intracellular bacterium that is estimated to infect up to 65% of insect species, but it is not naturally present in Anopheles malaria vectors. Wolbachia-based strategies for malaria vector control can be developed either through population replacement to reduce vectorial capacity or through population suppression to reduce the mosquito population. We have previously generated An. stephensi mosquitoes carrying a stable wAlbB Wolbachia infection and have demonstrated their ability to invade wild-type laboratory populations and confer resistance to Plasmodium on these populations.

Methods: We assessed wAlbB-associated fitness by comparing the female fecundity, immature development and survivorship, body size, male mating competiveness, and adult longevity of the infected An. stephensi to that of wild-type mosquitoes.

Results: We found that wAlbB reduced female fecundity and caused a minor decrease in male mating competiveness. We also observed that wAlbB increased the life span of both male and female mosquitoes when they were maintained solely on sugar meals; however, there was no impact on the life span of blood-fed females. In addition, wAlbB did not influence either immature development and survivorship or adult body sizes.

Conclusions: These results provide significant support for developing Wolbachia-based strategies for malaria vector control.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Impact of wAlbB on An. stephensi fecundity. The number of eggs laid by each individual female and the hatch rate after feeding on mouse (A, B), sheep (C, D) or human (E, F) blood. For all figures, error bars represent standard error; statistical significance is represented by letters above each column, with different letters signifying distinct statistical groups [P < 0.05; Student’s t-test for (A and E); P < 0.0001; chi-squared test for (B, D and F)].
Figure 2
Figure 2
Impact of wAlbB on the body size of An. stephensi. Box plots display the observed distribution of wing length in female (A) and male (B) LIS, LB1, and LBT mosquitoes. The boxes in each panel represent (from bottom to top) the 25th to 75th percentiles. Horizontal bars within the boxes indicate the median value of each group. Interactions between wAlbB Wolbachia infection and body size, as based on measurement of the wing size, were not detected in either sex [P = 0.7746 for (A); P = 0.487 for (B); one-way ANOVA].
Figure 3
Figure 3
Impact of wAlbB on male mating competitiveness. Suppression of egg hatch in LIS populations via release of LB1 males. The blue line illustrates the egg hatch observed in population cage tests. The orange line illustrates the expected egg hatch, assuming equal competitiveness of LB1 and LIS males [24].
Figure 4
Figure 4
Impact of wAlbB on the life span of An. stephensi. Mosquitoes were provided with either 10% sucrose only (A and B) or blood meals to females (C). One day after eclosion (A and B) or a blood meal (C), males or females were individually transferred to mesh-covered cardboard buckets with 10% sucrose available. The dead mosquitoes were removed with an aspirator and recorded daily. The curves represent the mean percentage of mosquitoes surviving from three biological replicates each day. Both female and male LB1 mosquitoes lived significantly longer than did LIS mosquitoes (P = 0.0017 for (A); P = 0.0095 for (B); log-rank test) when maintained on sucrose alone. There was no significant difference in the life span of blood-fed females between LB1 and LIS mosquitoes (C).

References

    1. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?–A statistical analysis of current data. FEMS Microbiol Lett. 2008;281(2):215–220. doi: 10.1111/j.1574-6968.2008.01110.x. - DOI - PMC - PubMed
    1. Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741–751. doi: 10.1038/nrmicro1969. - DOI - PubMed
    1. Kittayapong P, Baisley KJ, Baimai V, O’Neill SL. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae) J Med Entomol. 2000;37(3):340–345. doi: 10.1603/0022-2585(2000)037[0340:DADOWI]2.0.CO;2. - DOI - PubMed
    1. Sinkins SP. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol. 2004;34(7):723–729. doi: 10.1016/j.ibmb.2004年03月02日5. - DOI - PubMed
    1. Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310(5746):326–328. doi: 10.1126/science.1117607. - DOI - PubMed

Publication types

LinkOut - more resources

Cite

AltStyle によって変換されたページ (->オリジナル) /