This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 5;8(6):e2902.
doi: 10.1371/journal.pntd.0002902. eCollection 2014 Jun.

Epidemiology of leptospira transmitted by rodents in southeast Asia

Affiliations

Epidemiology of leptospira transmitted by rodents in southeast Asia

Jean-François Cosson et al. PLoS Negl Trop Dis. .

Abstract

Background: Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking.

Methodology/principal findings: We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands).

Conclusion/significance: L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which deserve more attention in future epidemiological studies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Geographic distribution of Leptospira infection in rodents from Thailand, Lao PDR and Cambodia.
Figure 2
Figure 2. Phylogenetic analysis for the secY gene of Leptospira sp. isolated from rodents and humans from Thailand, Lao PDR and Cambodia.
Information about locality, rodent species and/or human cases are indicated. See Text S1 for details about samples. Numbers above branches are bootstrap values (only>0.90 are indicated).
Figure 3
Figure 3. Prevalence of L. borgpetersenii (blue) and L. interrogans (green) in rodents according to habitat and sex.
p-values are indicated.

References

    1. Hartskeerl RA, Collares-Pereira M, Ellis WA (2011) Emergence, control and re-emerging leptospirosis: dynamics of infection in the changing world. Clin Microbiol Infect 17: 494–501. - PubMed
    1. Abela-Ridder B, Sikkema R, Hartskeerl RA (2010) Estimating the burden of human leptospirosis. Int J Antimicrob Agents 36 Suppl 1: S5–7. - PubMed
    1. Wuthiekanun V, Sirisukkarn N, Daengsupa P, Sakaraserane P, Sangkakam A, et al. (2007) Clinical diagnosis and geographic distribution of leptospirosis, Thailand. Emerg Infect Dis 13: 124–126. - PMC - PubMed
    1. Al Ko, Mitermayer GR, Ribeiro Dourado CM, Johnson WD, Riley LW (1999) Salvador Leptospirosis Study Group. Urban epidemic of severe leptospirosis in Brazil. Lancet 354: 820–825. - PubMed
    1. Plank R, Dean D (2000) Overview of the epidemiology, microbiology, and pathogenesis of Leptospira spp. in humans. Microbes and Infection 2: 1265–1276. - PubMed

Publication types

MeSH terms

Associated data

Cite

AltStyle によって変換されたページ (->オリジナル) /