Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata
- PMID: 24416419
- PMCID: PMC3885724
- DOI: 10.1371/journal.pone.0085523
Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata
Abstract
The Mediterranean fruit fly, Ceratitis capitata (medfly), is an extremely invasive agricultural pest due to its extremely wide host range and its ability to adapt to a broad range of climatic conditions and habitats. Chemosensory behaviour plays an important role in many crucial stages in the life of this insect, such as the detection of pheromone cues during mate pursuit and odorants during host plant localisation. Thus, the analysis of the chemosensory gene repertoire is an important step for the interpretation of the biology of this species and consequently its invasive potential. Moreover, these genes may represent ideal targets for the development of novel, effective control methods and pest population monitoring systems. Expressed sequence tag libraries from C. capitata adult heads, embryos, male accessory glands and testes were screened for sequences encoding putative odorant binding proteins (OBPs). A total of seventeen putative OBP transcripts were identified, corresponding to 13 Classic, three Minus-C and one Plus-C subfamily OBPs. The tissue distributions of the OBP transcripts were assessed by RT-PCR and a subset of five genes with predicted proteins sharing high sequence similarities and close phylogenetic affinities to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs) were characterised in greater detail. Real Time quantitative PCR was used to assess the effects of maturation, mating and time of day on the transcript abundances of the putative PBPRP genes in the principal olfactory organs, the antennae, in males and females. The results of the present study have facilitated the annotation of OBP genes in the recently released medfly genome sequence and represent a significant contribution to the characterisation of the medfly chemosensory repertoire. The identification of these medfly OBPs/PBPRPs permitted evolutionary and functional comparisons with homologous sequences from other tephritids of the genera Bactrocera and Rhagoletis.
Conflict of interest statement
Figures
References
-
- Malacrida AR, Gomulski LM, Bonizzoni M, Bertin S, Gasperi G, et al. (2007) Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica 131: 1–9. - PubMed
-
- Diaz-Fleischer F, Papaj DR, Prokopy RJ, Norrbom AL, Aluja M (2000) Evolution of fruit fly oviposition behavior. In: M A, Norrbom AL, editors. Fruit flies (Tephritidae): phylogeny and evolution of behavior. Boca Raton, Florida, USA: CRC Press. 811–841.
-
- Drew RAI, Yuval B (2000) The evolution of fruit fly feeding behavior. In: Aluja M, Norrbom A, editors. Fruit flies (Tephritidae): phylogeny and evolution of behavior. Boca Raton, Florida, USA: CRC Press. 731–749.
-
- Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293: 161–163. - PubMed
-
- Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58: 373–391. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources