This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;6(12):e1941.
doi: 10.1371/journal.pntd.0001941. Epub 2012 Dec 6.

Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti

Affiliations

Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti

Katy L Hamlin et al. PLoS Negl Trop Dis. 2012.

Abstract

Antifilarial antibody testing has been established as a sensitive and specific method of diagnosing lymphatic filariasis. However, the development of serological responses to specific filarial antigens and their relationship to acquisition of infection is poorly understood. In order to evaluate whether the development of antigen specific antifilarial antibodies precedes microfilaremia and antigenemia, we compared the antibody responses of serum samples collected between 1990 and 1999 from a cohort of 142 Haitian children followed longitudinally. Antigen status was determined using the Og4C3 ELISA and the presence of microfilaremia was detected using microscopy. Antibody responses to Wb123, a Wuchereria bancrofti L3 antigen, were measured using a Luciferase Immunoprecipitation System (LIPS) assay. Antibody responses to Bm14 and Bm33, Brugia malayi antigens and to a major surface protein (WSP) from Wolbachia were analyzed using a multiplex bead assay. Over follow-up, 80 (56%) of the children became antigen-positive and 30 (21%) developed microfilaremia. Detectable antibody responses to Bm14, Bm33, Wb123, and WSP developed in 95%, 100%, 92%, and 29% of children, respectively. With the exception of WSP, the development of antibody responses generally preceded detection of filarial antigen. Our results show that antifilarial antibody responses can serve as an important epidemiological indicator in a sentinel population of young children and thus, may be valuable as tool for surveillance in the context of lymphatic filariasis elimination programs.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Prevalence of intestinal helminths.
The prevalence of Trichuris trichiura eggs (TTE), Ascaris lumbricoides eggs (ALE), Hookworm eggs (HWE) and Strongyloides stercoralis larvae (SSL) was assessed in stools from children enrolled in the longitudinal cohort during the first 5 years of life.
Figure 2
Figure 2. Representative antibody profiles.
Antibody responses to Wb123, Bm14, BM33 and WSP were monitored in serum samples for child #5331 (panel A) and child #2604 (panel B). collected over time. First detection of antigenemia (by Og4C3 ELISA) and microfilaremia are indicated. Microfilaremic children were treated with DEC.
Figure 3
Figure 3. Age prevalence of microfilaremia, antigenemia and antifilarial antibody responses.
Circulating filarial antigen and microfilaria prevalence are shown in the top panel A. Antibody responses to Bm14, Bm33, Wb123, and WSP filarial antigens are shown in the bottom panel B.
Figure 4
Figure 4. Quantitative changes in antibody among antigen-positive children.
Shown are Bm33 (panel A), Bm14 (panel B), and Wb123 (panel C) antibody levels by age for antigen-positive children. In this plot, boxes represent the 25th–5th percentile with the line in the box, the median. Whiskers represent the10th and 90th percentile and filled circles are 5th and 95th percentile. Note that Luminex unit values are specific to each antigen and should not be assumed to be equivalent across antigens.
Figure 5
Figure 5. Quantitative changes in antibody among antigen-negative children.
Shown are Bm33 (panel A), Bm14 (panel B), and Wb123 (panel C) antibody levels by age for antigen-negative children. In this plot, boxes represent the 25th–5th percentile with the line in the box, the median. Whiskers represent the10th and 90th percentile and filled circles are 5th and 95th percentile.

References

    1. Lammie PJ, Reiss MD, Dimock KA, Streit TG, Roberts JM, et al. (1998) Longitudinal analysis of the development of filarial infection and antifilarial immunity in a cohort of Haitian children. Am J Trop Med Hyg 59: 217–221. - PubMed
    1. Witt C, Ottesen EA (2001) Lymphatic filariasis: an infection of childhood. Trop Med Int Health 6: 582–606. - PubMed
    1. Fox LM, Furness BW, Haser JK, Brissau J-M, Louis-Charles J, et al. (2005) Ultrasonographic examination of Haitian children with lymphatic filariasis: A longitudinal assessment in the context of antifilarial drug treatment. Am J Trop Med Hyg72: 642–648. - PubMed
    1. Shenoy RK, Suma TK, Kumaraswami V, Rahmah N, Dhananjayan G, et al. (2007) Preliminary findings from a cross-sectional study on lymphatic filariasis in children, in an area of India endemic for Brugia malayi infection. Ann Trop Med Parasitol 101: 205–213. - PubMed
    1. Shenoy RK, Suma TK, Kumaraswami V, Rahmah N, Dhananjayan G, et al. (2009) Antifilarial drugs, in the doses employed in mass drug administrations by the Global Programme to Eliminate Lymphatic Filariasis, reverse lymphatic pathology in children with Brugia malayi infection. Ann Trop Med Parasitol 103: 235–247. - PubMed

Publication types

MeSH terms

Cite

AltStyle によって変換されたページ (->オリジナル) /