This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 15;5(2):e962.
doi: 10.1371/journal.pntd.0000962.

Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system

Affiliations

Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system

Yaneth Osorio et al. PLoS Negl Trop Dis. .

Abstract

Background: New drugs are needed to treat visceral leishmaniasis (VL) because the current therapies are toxic, expensive, and parasite resistance may weaken drug efficacy. We established a novel ex vivo splenic explant culture system from hamsters infected with luciferase-transfected Leishmania donovani to screen chemical compounds for anti-leishmanial activity.

Methodology/principal findings: THIS MODEL HAS ADVANTAGES OVER IN VITRO SYSTEMS IN THAT IT: 1) includes the whole cellular population involved in the host-parasite interaction; 2) is initiated at a stage of infection when the immunosuppressive mechanisms that lead to progressive VL are evident; 3) involves the intracellular form of Leishmania; 4) supports parasite replication that can be easily quantified by detection of parasite-expressed luciferase; 5) is adaptable to a high-throughput screening format; and 6) can be used to identify compounds that have both direct and indirect anti-parasitic activity. The assay showed excellent discrimination between positive (amphotericin B) and negative (vehicle) controls with a Z' Factor >0.8. A duplicate screen of 4 chemical libraries containing 4,035 compounds identified 202 hits (5.0%) with a Z score of <-1.96 (p<0.05). Eighty-four (2.1%) of the hits were classified as lead compounds based on the in vitro therapeutic index (ratio of the compound concentration causing 50% cytotoxicity in the HepG(2) cell line to the concentration that caused 50% reduction in the parasite load). Sixty-nine (82%) of the lead compounds were previously unknown to have anti-leishmanial activity. The most frequently identified lead compounds were classified as quinoline-containing compounds (14%), alkaloids (10%), aromatics (11%), terpenes (8%), phenothiazines (7%) and furans (5%).

Conclusions/significance: The ex vivo splenic explant model provides a powerful approach to identify new compounds active against L. donovani within the pathophysiologic environment of the infected spleen. Further in vivo evaluation and chemical optimization of these lead compounds may generate new candidates for preclinical studies of treatment for VL.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Rationale for selection of the time for establishing the ex vivo splenic explant culture.
Hamsters infected with 106 Luc-transfected L. donovani were evaluated from 7 to 21 days post infection (n = 6 per time point). (A) Spleen weight. Shown is the mean ± standard deviation (SD) of the spleen to body weight ratio (spleen weight divided the body weight). (B) Splenic parasite burden. The number of amastigotes (mean ± SD) was determined by luminometry in 500,000 splenocytes by extrapolating the counts (photons/sec) to a standard curve of microscopy-enumerated spleen-derived amastigotes. (C) Total splenocyte number. Splenocyte number (mean ± SD) was determined by counting the cells by microscopy. (D) Splenocyte lymphoproliferative response. The splenocyte stimulation index (shown as the mean ± SD) was determined by dividing the cpm of concanavalin A-stimulated and non-stimulated splenocytes. (E) Splenic soluble collagen content. The soluble collagen content (shown as the mean ± SD) was determined in spleens from uninfected and infected hamsters by the Sircol assay (Biocolor). (F) Splenic Arginase activity. Tissue arginase activity was determined by measurement of urea catalysis and is shown as the mean ± SD. Statistical analysis for all panels was performed by one-way analysis of variance (ANOVA).
Figure 2
Figure 2. Characterization of the splenic explant cultures.
(A) Representative amastigote standard curve. Correlation between the number of L. donovani amastigotes counted by microscopy and the luciferase activity determined by luminometry. (B) Amastigote replication in splenic explant cultures. Number of amastigotes in ex vivo explants cultures determined by luminometry and interpolation from the standard curve over 0 to 72 hours of incubation (100,000 splenocytes per well). (C) Percent of infected macrophages in splenic ex vivo cultures. Splenocytes harvested from infected hamsters (21 days p.i.) were plated and the proportion of infected macrophages (shown as the mean ± SD) was determined by microscopy at 0, 24, 48, and 72 hours of ex vivo culture. (D) Number amastigotes per 100 macrophages. Amastigotes enumerated by direct microscopy in Giemsa stained cytospin slides (mean ± SD in 4 different samples per time point). (E, F) Infected splenocytes in ex vivo culture. Representative Giemsa-stained photomicrograph of splenocytes from hamsters infected with L. donovani at pre-culture (E) and after 48h of ex vivo culture (F).

References

    1. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–126. - PMC - PubMed
    1. Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. Adv Exp Med Biol. 2008;625:48–60. - PubMed
    1. Ephros M, Bitnun A, Shaked P, Waldman E, Zilberstein D. Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother. 1999;43:278–282. - PMC - PubMed
    1. Valiathan R, Dubey ML, Mahajan RC, Malla N. Leishmania donovani: effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Indian clinical isolates to sodium stibogluconate. Exp Parasitol. 2006;114:103–108. - PubMed
    1. Murray HW, Granger AM, Mohanty SK. Response to chemotherapy in experimental visceral leishmaniasis: T cell- dependent but interferon-gamma- and interleukin-2-independent. J Infect Dis. 1991;163:622–624. - PubMed

Publication types

Cite

AltStyle によって変換されたページ (->オリジナル) /