TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets
- PMID: 20573248
- PMCID: PMC2910026
- DOI: 10.1186/1471-2105-11-341
TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets
Abstract
Background: Sequencing metagenomes that were pre-amplified with primer-based methods requires the removal of the additional tag sequences from the datasets. The sequenced reads can contain deletions or insertions due to sequencing limitations, and the primer sequence may contain ambiguous bases. Furthermore, the tag sequence may be unavailable or incorrectly reported. Because of the potential for downstream inaccuracies introduced by unwanted sequence contaminations, it is important to use reliable tools for pre-processing sequence data.
Results: TagCleaner is a web application developed to automatically identify and remove known or unknown tag sequences allowing insertions and deletions in the dataset. TagCleaner is designed to filter the trimmed reads for duplicates, short reads, and reads with high rates of ambiguous sequences. An additional screening for and splitting of fragment-to-fragment concatenations that gave rise to artificial concatenated sequences can increase the quality of the dataset. Users may modify the different filter parameters according to their own preferences.
Conclusions: TagCleaner is a publicly available web application that is able to automatically detect and efficiently remove tag sequences from metagenomic datasets. It is easily configurable and provides a user-friendly interface. The interactive web interface facilitates export functionality for subsequent data processing, and is available at http://edwards.sdsu.edu/tagcleaner.
Figures
References
-
- Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, McDaniel L, Moran MA, Nelson KE, Nilsson C, Olson R, Paul J, Brito BR, Ruan Y, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F. Functional metagenomic profiling of nine biomes. Nature. 2008;452(7187):629–632. doi: 10.1038/nature06810. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources