Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes
- PMID: 18077626
- PMCID: PMC2238081
- DOI: 10.1128/JCM.00514-07
Efficient identification of clinically relevant Candida yeast species by use of an assay combining panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes
Abstract
The occurrence of invasive mycoses has progressively increased in recent years. Yeasts of the genus Candida remain the leading etiologic agents of those infections. Early identification of opportunistic yeasts may contribute significantly to improved disease management and the selection of appropriate antifungal therapy. We developed a rapid and reliable molecular identification system for clinically relevant yeasts that makes use of nonspecific primers to amplify a region of the 26S rRNA gene, followed by reverse hybridization of the digoxigenin-labeled products to a panel of species-specific oligonucleotide probes arranged on a nylon membrane macroarray format. DNA amplification was achieved by the recently developed loop-mediated isothermal DNA amplification technology, a promising option for the development of improved laboratory diagnostic kits. The newly developed method was successful in distinguishing among the major clinically relevant yeasts associated with bloodstream infections by using simple, rapid, and cost-effective procedures and equipment.
Figures
References
-
- Alexander, B. D., E. D. Ashley, L. B. Reller, and S. D. Reed. 2006. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn. Microbiol. Infect. Dis. 54277-282. - PubMed
-
- Aoi, Y., M. Hosogai, and S. Tsuneda. 2006. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J. Biotechnol. 125484-491. - PubMed
-
- Borst, A., J. Verhoef, E. Boel, and A. C. Fluit. 2002. Clinical evaluation of a NASBA-based assay for detection of Candida spp. in blood and blood cultures. Clin. Lab. 48487-492. - PubMed
-
- Borst, A., M. A. Leverstein-Van Hall, J. Verhoef, and A. C. Fluit. 2001. Detection of Candida spp. in blood cultures using nucleic acid sequence-based amplification (NASBA). Diagn. Microbiol. Infect. Dis. 39155-160. - PubMed
-
- Brown, T. J., and R. M. Anthony. 2000. The addition of low numbers of 3′ thymine bases can be used to improve the hybridization signal of oligonucleotides for use within arrays on nylon supports. J. Microbiol. Methods 42203-207. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical