Polymorphism and epitope sharing between the alleles of merozoite surface protein-1 of Plasmodium falciparum among Indian isolates
- PMID: 17659072
- PMCID: PMC1950510
- DOI: 10.1186/1475-2875-6-95
Polymorphism and epitope sharing between the alleles of merozoite surface protein-1 of Plasmodium falciparum among Indian isolates
Abstract
Background: The C-terminal region of merozoite surface protein-1 (MSP-1) is one of the leading candidates for vaccination against the erythrocytic stages of malaria. However, a major concern in the development of MSP-1 based malaria vaccine is the polymorphism observed in different geographical Plasmodium falciparum isolates. To explore whether the sequence heterogeneity of PfMSP-1 leads to variation in naturally acquired anti-MSP-119 antibodies, the present study was undertaken to study PfMSP-119 sequence polymorphism in malaria-endemic villages in eastern India and also carried out a competition enzyme-linked immunosorbent assay using three PfMSP-119 variant forms.
Methods: The sequence variations in the C-terminal region of PfMSP-119 were determined in a malaria endemic region. Three PfMSP-119 variants were produced in Escherichia coli (PfMSP119QKNG-L, PfMSP119EKNG-L and PfMSP119ETSR-F) and an immunodepletion assay was carried out using the corresponding patients' sera.
Results: Results revealed predominance of PfMAD20 allele among Indian field isolates. Seven PfMSP-119 variant forms were isolated in a singe geographical location. Three of PfMSP-119 variant forms when expressed in E. coli showed presence of cross-reaction as well as variant specific antibodies in malaria infected patient sera.
Conclusion: The present study demonstrates the existence of allele specific antibodies in P. falciparum-infected patient sera, however their role in protection requires further investigation. These results thereby, suggest the importance of a multi-allelic PfMSP-119 based vaccine for an effective malaria control.
Figures
References
-
- Blackman MJ, Holder AA. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol Biochem Parasitol. 1992;50:307–315. doi: 10.1016/0166-6851(92)90228-C. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials