This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!
Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log in
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;2(3):e24.
doi: 10.1371/journal.ppat.0020024. Epub 2006 Mar 31.

Ancestral genomes, sex, and the population structure of Trypanosoma cruzi

Affiliations

Ancestral genomes, sex, and the population structure of Trypanosoma cruzi

Jorge M de Freitas et al. PLoS Pathog. 2006 Mar.

Abstract

Acquisition of detailed knowledge of the structure and evolution of Trypanosoma cruzi populations is essential for control of Chagas disease. We profiled 75 strains of the parasite with five nuclear microsatellite loci, 24Salpha RNA genes, and sequence polymorphisms in the mitochondrial cytochrome oxidase subunit II gene. We also used sequences available in GenBank for the mitochondrial genes cytochrome B and NADH dehydrogenase subunit 1. A multidimensional scaling plot (MDS) based in microsatellite data divided the parasites into four clusters corresponding to T. cruzi I (MDS-cluster A), T. cruzi II (MDS-cluster C), a third group of T. cruzi strains (MDS-cluster B), and hybrid strains (MDS-cluster BH). The first two clusters matched respectively mitochondrial clades A and C, while the other two belonged to mitochondrial clade B. The 24Salpha rDNA and microsatellite profiling data were combined into multilocus genotypes that were analyzed by the haplotype reconstruction program PHASE. We identified 141 haplotypes that were clearly distributed into three haplogroups (X, Y, and Z). All strains belonging to T. cruzi I (MDS-cluster A) were Z/Z, the T. cruzi II strains (MDS-cluster C) were Y/Y, and those belonging to MDS-cluster B (unclassified T. cruzi) had X/X haplogroup genotypes. The strains grouped in the MDS-cluster BH were X/Y, confirming their hybrid character. Based on these results we propose the following minimal scenario for T. cruzi evolution. In a distant past there were at a minimum three ancestral lineages that we may call, respectively, T. cruzi I, T. cruzi II, and T. cruzi III. At least two hybridization events involving T. cruzi II and T. cruzi III produced evolutionarily viable progeny. In both events, the mitochondrial recipient (as identified by the mitochondrial clade of the hybrid strains) was T. cruzi II and the mitochondrial donor was T. cruzi III.

PubMed Disclaimer

Conflict of interest statement

Competing interests. The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Multidimensional Scaling Plot of 75 T. cruzi Strains Genotyped for Five Microsatellites
Only outliers and the prototypical strains of Brisse et al. [26] are named in the plot. Arrowheads indicate strains 222 and 115. The strains in the areas delimited by ellipsoids are the following: MDS-cluster A: 1001, 1004, 1006, 1502, 1523, A83, A87, Col18/05, Colombiana, Cuíca, Cutia, D7, Gambacl1, Rb1, Rb2, Rb6, SE, X10cl1, 402, Mas1cl1, 84, 207, 209, 239, 577, 578, 580, 581, 803, 1005, 1014, 1043, 1931, 183744, 169/1; MDS-cluster C: 200pm, 84Ti, Be62, CPI11/94, CPI95/94, Esmeraldo, Gil, GLT564, GLT593, GMS, GOCH, Ig539, JAF, JG, JHF, JSM, MPD, OPS27/94, Tu18 cl11, Y; MDS-cluster B: 115, 222, 226, 231, 3663, 3869, 4182, M5631cl5; MDS-cluster BH: M6241cl6, 167, 1022, c182, CLBrener, MNcl2, NR, SC43 cl1, SO3, Tulacl2.
Figure 2
Figure 2. Sequence of a 290–Base Pair Fragment of the Mitochondrial COII Gene of 41 Strains of T. cruzi
Only the variable nucleotides are shown. T. cruzi III refers to sublineage IIc, and "Hybrids" indicate the strains belonging to sublineages IId and IIe of Brisse et al [26]. Two AluI restriction sites are indicated. RFLP analysis of these two sites allows unambiguous classification of T. cruzi strains to the three mitochondrial clades as shown on the right hand side.
Figure 3
Figure 3. NJ Trees Obtained from the Sequences of Three Mitochondrial Genes of T. cruzi: COII, CYb, and ND1
The numbers in the three main branches indicate the percentage bootstrap values. For COII the strains the following clades are displayed: clade A: 1004, 1006, 1502, Col18/05, Cuica, Cutia, RBI, RbII, SilvioX10; clade B: sublineage IIc—222, 231, 3869, M6241, Mn, sublineages IId and IIe—CLBrener, 1022, SO3, Tula; clade C: 1014, 1043, 169/1, 1931, 200pm, 209, 577, 578, 580, 581, 803, 84Ti, Be62, Esmeraldo, GLT593, GMS, Ig539, JG, JHF, Mas1, MPD, TU18, Y. For CYb the strains are as follows: clade A: Cuica, SC13, Tehuentepec, X10; clade B: sublineage IIc—M5631, M6241, X109/2, sublineages IId and IIe—92.80, CL, Guateque, MN, SC43, Tulahuen, X57; clade C: CBB, Esmeraldo, TU18. For ND1 the strains are as follows: clade A: 133, 26, 85/818, A80, A92, CEPA, CUICA, CUTIA, Esquilo, MAV, OPS21, P0AC, P209, SABP3, SC13, SO34, TEH, V121, Vin, X10; clade B: sublineage IIc—CM, M6241, X109/2, X110/8, X9/3, sublineages IId and IIe—CL, 86/2036, 86–1, EPP, P251, P63, PSC-O, SO3, Tulahuen, VMV4; clade C: CBB, Esmeraldo, MBV, MCV, MSC2, TU18, X-300.
Figure 4
Figure 4. Median Joining Network of the Haplotypes Identified by the PHASE Software
Figure 5
Figure 5. Diagram Depicting the Proposed Model for the Evolution of T. cruzi Strains
The mitochondrial clade was typed by RFLP of the COII maxicircle gene, the MDS clusters were established by multidimensional scaling of microsatellite data, the haplogroups were established by haplotype estimation from multilocal genotypes followed by median joining network analysis, and the RAPD/multilocus enzyme electrophoresis typing was obtained from Brisse et al. [26].

References

    1. Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis. 2001;1:92–100. - PubMed
    1. World Health Organization [WHO] Control of Chagas disease. Technical Report Series, 811. Geneva: WHO; 1991. 91 pp. - PubMed
    1. Briones MR, Souto RP, Stolf BS, Zingales B. The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol Biochem Parasitol. 1999;104:219–232. - PubMed
    1. Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J et al. A 9,000-year record of Chagas' disease. Proc Natl Acad Sci U S A. 2004;101:2034–2039. - PMC - PubMed
    1. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: A review. Mem Inst Oswaldo Cruz. 2002;97:603–612. - PubMed

Publication types

Substances

Associated data

Cite

AltStyle によって変換されたページ (->オリジナル) /