Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis

Nature Genetics volume 42, pages 579–589 (2010)Cite this article

A Corrigendum to this article was published on 29 March 2011

This article has been updated

Abstract

By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 ×ばつ 10−8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.

This is a preview of subscription content, access via your institution

Access options

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide Manhattan plots for the DIAGRAM+ stage 1 meta-analysis.
Figure 2: Regional plots of the 12 newly discovered T2D loci.
Figure 3: Plots of fasting blood glucose, insulin and derived indices for the established and new T2D loci.

Similar content being viewed by others

Change history

  • (2010年08月27日 追記)

    27 August 2010

    In the version of this article initially published, there was an error in Table 1. Specifically, for rs5945326, the risk and non-risk alleles were reversed. The correct risk allele at rs5945326 is A, the non-risk allele is G and the risk allele frequency in HapMap CEU is 0.79. These errors have been corrected in the HTML and PDF versions of the article.

    (追記ここまで)

References

  1. Stumvoll, M., Goldstein, B.J. & van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    Article CAS Google Scholar

  2. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article CAS Google Scholar

  3. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article CAS Google Scholar

  4. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article CAS Google Scholar

  5. Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article CAS Google Scholar

  6. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article CAS Google Scholar

  7. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article CAS Google Scholar

  8. Yasuda, K. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097 (2008).

    Article CAS Google Scholar

  9. Unoki, H. et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102 (2008).

    Article CAS Google Scholar

  10. Rung, J. et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat. Genet. 41, 1110–1115 (2009).

    Article CAS Google Scholar

  11. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article CAS Google Scholar

  12. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article CAS Google Scholar

  13. Saxena, R. et al. Genetic variation in gastric inhibitory polypeptide receptor (GIPR) impacts the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

    Article CAS Google Scholar

  14. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article CAS Google Scholar

  15. Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89–94 (2009).

    Article CAS Google Scholar

  16. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82–88 (2009).

    Article CAS Google Scholar

  17. Fitzpatrick, G.V., Soloway, P.D. & Higgins, M.J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).

    Article CAS Google Scholar

  18. Kassem, S.A. et al. p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes 50, 2763–2769 (2001).

    Article CAS Google Scholar

  19. Newton-Cheh, C. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).

    Article CAS Google Scholar

  20. Pfeufer, A. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414 (2009).

    Article CAS Google Scholar

  21. Winckler, W. et al. Association of common variation in the HNF1α gene region with risk of type 2 diabetes. Diabetes 54, 2336–2342 (2005).

    Article CAS Google Scholar

  22. Weedon, M.N. et al. A large-scale association analysis of common variation of the HNF1α gene with type 2 diabetes in the U.K. Caucasian population. Diabetes 54, 2487–2491 (2005).

    Article CAS Google Scholar

  23. Bonnycastle, L.L. et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes 55, 2534–2540 (2006).

    Article CAS Google Scholar

  24. Hegele, R.A., Cao, H., Harris, S.B., Hanley, A.J. & Zinman, B. The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J. Clin. Endocrinol. Metab. 84, 1077–1082 (1999).

    CAS PubMed Google Scholar

  25. Kobberling, J. & Tillil, H. Empirical risk figures for first degree relatives of non-insulin-dependent diabetics. in The Genetics of Diabetes Mellitus (eds. Kobberling, J. & Tattersall, R.) 201–209 (Academic Press, New York, 1982).

  26. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article CAS Google Scholar

  27. Browning, B.L. & Browning, S.R. Haplotypic analysis of Wellcome Trust Case Control Consortium data. Hum. Genet. 123, 273–280 (2008).

    Article Google Scholar

  28. Weedon, M.N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article CAS Google Scholar

  29. Stacey, S.N. et al. New common variants affecting susceptibility to basal cell carcinoma. Nat. Genet. 41, 909–914 (2009).

    Article CAS Google Scholar

  30. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).

    Article CAS Google Scholar

  31. Reiner, A.P. et al. Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein. Am. J. Hum. Genet. 82, 1193–1201 (2008).

    Article CAS Google Scholar

  32. Ridker, P.M. et al. Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women's Genome Health Study. Am. J. Hum. Genet. 82, 1185–1192 (2008).

    Article CAS Google Scholar

  33. Elliott, P. et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. J. Am. Med. Assoc. 302, 37–48 (2009).

    Article CAS Google Scholar

  34. Helgadottir, A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat. Genet. 40, 217–224 (2008).

    Article CAS Google Scholar

  35. Samani, N.J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    Article CAS Google Scholar

  36. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    Article CAS Google Scholar

  37. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article CAS Google Scholar

  38. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article CAS Google Scholar

  39. Johansson, A. et al. Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. Hum. Mol. Genet. 18, 373–380 (2009).

    Article CAS Google Scholar

  40. Quaranta, M. et al. Differential contribution of CDKAL1 variants to psoriasis, Crohn's disease and type II diabetes. Genes Immun. 10, 654–658 (2009).

    Article CAS Google Scholar

  41. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article CAS Google Scholar

  42. Nicolson, T.J. et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58, 2070–2083 (2009).

    Article CAS Google Scholar

  43. Willer, C.J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article CAS Google Scholar

  44. Florez, J.C. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51, 1100–1110 (2008).

    Article CAS Google Scholar

  45. Anand, A. & Chada, K. In vivo modulation of Hmgic reduces obesity. Nat. Genet. 24, 377–380 (2000).

    Article CAS Google Scholar

  46. Boesgaard, T.W. et al. Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients–EUGENE2 study. PLoS One 4, e7236 (2009).

    Article Google Scholar

  47. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article CAS Google Scholar

  48. Wang, K. et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am. J. Hum. Genet. 84, 399–405 (2009).

    Article CAS Google Scholar

  49. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article Google Scholar

  50. Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, D284–D288 (2005).

    Article CAS Google Scholar

  51. Matthews, L. et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, D619–D622 (2009).

    Article CAS Google Scholar

  52. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article CAS Google Scholar

  53. Brants, J.R. et al. Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2. FEBS Lett. 569, 277–283 (2004).

    Article CAS Google Scholar

  54. Cleynen, I. et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol. Cancer Res. 5, 363–372 (2007).

    Article CAS Google Scholar

  55. Groenewoud, M.J. et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51, 1659–1663 (2008).

    Article CAS Google Scholar

  56. Brantjes, H., Roose, J., van De Wetering, M. & Clevers, H. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res. 29, 1410–1419 (2001).

    Article CAS Google Scholar

  57. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112 (1998).

    Article CAS Google Scholar

  58. Gordon, W.R. et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One 4, e6613 (2009).

    Article Google Scholar

  59. Somerville, R.P. et al. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278, 9503–9513 (2003).

    Article CAS Google Scholar

  60. Parker-Katiraee, L. et al. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet. 3, e65 (2007).

    Article Google Scholar

  61. Emanuelli, B., Eberlé, D., Suzuki, R. & Kahn, C.R. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc. Natl. Acad. Sci. USA 105, 3545–3550 (2008).

    Article CAS Google Scholar

  62. Xu, H. et al. Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J. Biol. Chem. 278, 30187–30192 (2003).

    Article CAS Google Scholar

  63. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).

    Article CAS Google Scholar

  64. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article CAS Google Scholar

  65. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article Google Scholar

  66. Lin, S., Chakravarti, A. & Cutler, D.J. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat. Genet. 36, 1181–1188 (2004).

    Article CAS Google Scholar

  67. Matthews, D.R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–409 (1985).

    Article CAS Google Scholar

  68. Stolerman, E.S. et al. TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 52, 614–620 (2009).

    Article CAS Google Scholar

  69. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article CAS Google Scholar

Download references

Acknowledgements

We acknowledge funding from: the Academy of Finland (no. 124243); Agence Nationale de la Recherche (France); American Diabetes Association (1-05-RA-140, 7-08-MN-OK; 7-06-MN-05); Ardix Medical; Association Diabète Risque Vasculaire; Association de Langue Française pour l'Etude du Diabète et des Maladies Métaboliques; Association Française des Diabétiques; Bayer Diagnostics; British Diabetic Association Research; Becton Dickinson; Broad Institute of Harvard and Massachusetts Institute of Technology; The Burroughs Wellcome Fund; Cardionics; Center for Inherited Disease Research (USA); Centre for Medical Systems Biology (The Netherlands); Centre of Excellence Metabolic Disorders Baden-Wuerttemberg (Germany); Caisse Nationale Assurance Maladie des Travailleurs Salariés (France); Clinical Research Institute HUCH Ltd; Deutsche Forschungsgemeinschaft (DFG GrK 1041, DFG RA459, SFB 518); the Danish Diabetes Association; the Danish Health Research Council; Diabetes UK; Doris Duke Charitable Foundation; Erasmus Medical Center (The Netherlands); the Dutch Diabetes Foundation; European Community (HEALTH-F4-2007-201413, HEALTH-2007-B-223211, LSHG-CT-2006-01947, LSHM-CT-2004-512013, LSHM-CT-2004-005272, LSHM-CT-2006-518153); the European Foundation for the Study of Diabetes; the Federal Ministry of Health (Germany); the Federal Ministry of Education and Research (Germany) (FKZ01GS0823 and DZD e.V.); Fédération Française de Cardiologie; The Finnish Diabetes Research Foundation; The Folkhalsan Research Foundation; The Foundation for Strategic Research (Sweden); The Foundation of Bristol-Myers Squibb; the German National Genome Research Network; Helmholtz Zentrum München-Research Center for Environment and Health; INSERM (France); La Fondation de France; Lilly; The Linnaeus Centre for Bioinformatics (Sweden); the Lundbeck Foundation Centre of Applied Medical Genomics for Personalized Disease Prediction, Prevention and Care; the Medical Research Council UK (G0601261, G0000649; 081696); Munich Center of Health Sciences-LMU Innovativ (Germany); Merck Santé; the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano (Italy); the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia (Germany); the Ministry of Science, Education and Sport (Croatia); the National Heart, Lung, and Blood Institute (N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, N01-HC-25195, R01HL087641, R01HL59367, R01HL086694, N02-HL-6-4278); National Human Genome Research Institute (U01HG004402, U01HG004399, U01HG004171, 1 Z01 HG000024); the National Institute of Diabetes, Digestive and Kidney Diseases (DK078616, K24-DK080140, U54 DA021519, DK58845, DK069922, DK062370, DK073490, K23-DK65978 and DK072193); the US National Institutes of Health (HHSN268200625226C, HHSN268200625226C, 1K08AR055688, UL1RR025005, 1K99HL094535-01A1); the Netherlands Foundation for Scientific Research (175.010.2005.011, 047.017.043); Nord-Pas-de-Calais region (France); Novartis Pharma; Novo Nordisk; the Oxford National Institute for Health Research (NIHR) Biomedical Research Centre (UK); Office National Inter-professionnel des Vins; Peninsula Medical School, Exeter UK; Pfizer, Inc; Pierre Fabre laboratory (France); Programme National de Recherche sur le Diabète (France); Richard and Susan Family Foundation/American Diabetes Association Pinnacle Program Project; Roche; the Royal Society (UK); Russian Foundation for Basic Research (047.017.043); Sanofi-Aventis; Sarnoff Cardiovascular Research; Scottish Government Chief Scientist Office; SenterNovem (IOP Genomics grant IGE05012); Sigrid Juselius Foundation; the Skaraborg Institute, Skövde, Sweden; South Tyrolean Sparkasse Foundation; the Swedish Natural Sciences Research Council; The Swedish Research Council (349 2006-237P); the Association Diabète Risque Vasculaire (France); Topcon; the Wallenberg Foundation; and the Wellcome Trust (072960; 076113; 083270; 088885; 079557; 081682; 086596; 077016; 075491). A more complete list of acknowledgments is provided in the Supplementary Note.

Author information

Author notes
  1. Benjamin F Voight, Laura J Scott, Valgerdur Steinthorsdottir, Andrew P Morris and Christian Dina: These authors contributed equally.

Authors and Affiliations

  1. Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA

    Benjamin F Voight, Soumya Raychaudhuri, Steve A McCarroll, Ayellet V Segrè, Kristin Ardlie, Noisël P Burtt, Gabe Crawford, Amanda L Elliott, Todd Green, Candace Guiducci, Richa Saxena, Mark J Daly, Jose C Florez & David Altshuler

  2. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA

    Benjamin F Voight, Soumya Raychaudhuri, Ayellet V Segrè, Todd Green, Richa Saxena, Mark J Daly, Jose C Florez & David Altshuler

  3. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA

    Benjamin F Voight, Peter Shrader, James B Meigs, Jose C Florez & David Altshuler

  4. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA

    Laura J Scott, Cristen J Willer, Martha Ganser, Anne U Jackson, Heather M Stringham, Gonçalo R Abecasis & Michael Boehnke

  5. deCODE Genetics, Reykjavik, Iceland

    Valgerdur Steinthorsdottir, Gudmar Thorleifsson, Augustine Kong, G Bragi Walters, Unnur Thorsteinsdottir & Kari Stefansson

  6. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

    Andrew P Morris, Eleftheria Zeggini, Teresa Ferreira, Katherine S Elliott, Cecilia M Lindgren, Inga Prokopenko, N William Rayner, Neil R Robertson & Mark I McCarthy

  7. CNRS-UMR-8090, Institute of Biology and Lille 2 University, Pasteur Institute, Lille, France

    Christian Dina, Christine Proença & Stephane Cauchi

  8. INSERM UMR915 CNRS ERL3147, Nantes, France

    Christian Dina

  9. Bioinformatics Program, University of Michigan, Ann Arbor, Michigan, USA

    Ryan P Welch

  10. Wellcome Trust Sanger Institute, Hinxton, UK

    Eleftheria Zeggini, Suzannah Bumpstead, Felicity Payne & Inês Barroso

  11. Institute of Epidemiology, Helmholtz Zentrum Muenchen, Neuherberg, Germany

    Cornelia Huth, Harald Grallert, Christian Gieger, Norman Klopp, Ann-Kristin Petersen, Barbara Thorand, H-Erich Wichmann & Thomas Illig

  12. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany

    Cornelia Huth, Harald Grallert & H-Erich Wichmann

  13. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands

    Yurii S Aulchenko, Najaf Amin, Jacqueline Witteman, Albert Hofman & Cornelia M van Duijn

  14. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK

    Laura J McCulloch, Amanda J Bennett, Christopher J Groves, Neelam Hassanali, Katharine R Owen, Inga Prokopenko, N William Rayner, Neil R Robertson, Anna L Gloyn & Mark I McCarthy

  15. Ontario Institute for Cancer Research, Toronto, Ontario, Canada

    Guanming Wu & Lincoln D Stein

  16. Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

    Soumya Raychaudhuri

  17. Department of Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA

    Steve A McCarroll, Ayellet V Segrè, Amanda L Elliott, Philippe Froguel & David Altshuler

  18. Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK

    Claudia Langenberg, Simon Griffin & Nicholas J Wareham

  19. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA

    Oliver M Hofmann & Winston A Hide

  20. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA

    Josée Dupuis

  21. National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA

    Josée Dupuis & Caroline S Fox

  22. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA

    Lu Qi, Peter Kraft, Qi Sun, David J Hunter & Frank B Hu

  23. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA

    Lu Qi, Peter Kraft, Qi Sun, David J Hunter & Frank B Hu

  24. Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA

    Lu Qi, Marilyn Cornelis, Rob M van Dam & Frank B Hu

  25. Department of Internal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands

    Mandy van Hoek, Thijs van Herpt, Eric Sijbrands & Andre Uitterlinden

  26. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK

    Pau Navarro

  27. INSERM, CESP Centre for Research in Epidemiology and Population Health, U1018, Epidemiology of Diabetes, Obesity and Chronic Kidney Disease over the Lifecourse, Villejuif, France

    Beverley Balkau

  28. University Paris-Sud 11, UMRS 1018, Villejuif, France

    Beverley Balkau

  29. Landspitali University Hospital, Reykjavik, Iceland

    Rafn Benediktsson & Gunnar Sigurdsson

  30. Icelandic Heart Association, Kopavogur, Iceland

    Rafn Benediktsson & Gunnar Sigurdsson

  31. Division of Endocrinology, Diabetes and Metabolism, Ulm University, Ulm, Germany

    Roza Blagieva & Bernhard O Boehm

  32. The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA

    Eric Boerwinkle

  33. National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, USA

    Lori L Bonnycastle, Peter S Chines, Michael R Erdos, Mario A Morken, Narisu Narisu & Amy J Swift

  34. Research and Development Centre, Skaraborg Primary Care, Skövde, Sweden

    Kristina Bengtsson Boström

  35. Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands

    Bert Bravenboer

  36. Endocrinology-Diabetology Unit, Corbeil-Essonnes Hospital, Corbeil-Essonnes, France

    Guillaume Charpentier

  37. Department of Biostatistics and Collaborative Studies Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

    David J Couper

  38. Diabetes Research Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK

    Alex S F Doney, Andrew D Morris & Colin N A Palmer

  39. Pharmacogenomics Centre, Biomedical Research Institute, University of Dundee, Ninewells Hospital, Dundee, UK

    Alex S F Doney, Andrew D Morris & Colin N A Palmer

  40. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA

    Amanda L Elliott, Richa Saxena & David Altshuler

  41. Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

    Caroline S Fox

  42. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK

    Christopher S Franklin, Igor Rudan, Harry Campbell & James F Wilson

  43. Hagedorn Research Institute, Gentofte, Denmark

    Niels Grarup, Thomas Sparsø, Torben Hansen & Oluf Pedersen

  44. Centre Hospitalier Universitaire de Poitiers, Endocrinologie Diabetologie, CIC INSERM 0801, INSERM U927, Université de Poitiers, UFR, Médecine Pharmacie, Poitiers Cedex, France

    Samy Hadjadj

  45. Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany

    Christian Herder & Michael Roden

  46. Folkhälsan Research Center, Helsinki, Finland

    Bo Isomaa & Tiinamaija Tuomi

  47. Malmska Municipal Health Center and Hospital, Jakobstad, Finland

    Bo Isomaa

  48. Diabetes Research and Wellness Foundation Human Islet Isolation Facility and Oxford Islet Transplant Programme, University of Oxford, Oxford, UK

    Paul R V Johnson

  49. Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark

    Torben Jørgensen

  50. Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark

    Torben Jørgensen

  51. Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA

    Wen H L Kao & Man Li

  52. Department of Medicine and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA

    Wen H L Kao

  53. Department of Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland

    Johanna Kuusisto & Markku Laakso

  54. Department of General Medical Practice, University of Aarhus, Aarhus, Denmark

    Torsten Lauritzen

  55. Department of Internal Medicine, Maxima Medical Center, Eindhoven, The Netherlands

    Aloysius Lieverse & Thijs van Herpt

  56. Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden

    Valeriya Lyssenko, Peter Nilsson & Leif Groop

  57. Department of Endocrinology, Diabetology and Nutrition, Bichat-Claude Bernard University Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France

    Michel Marre

  58. INSERM U695, Université Paris 7, Paris, France

    Michel Marre

  59. Institute of Human Genetics, Helmholtz Zentrum Muenchen, Neuherberg, Germany

    Thomas Meitinger

  60. Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, München, Germany

    Thomas Meitinger

  61. Department of Community Medicine and General Practice, Nord-Trøndelag Health Study (HUNT) Research Center, Norwegian University of Science and Technology, Trondheim, Norway

    Kristian Midthjell, Carl Platou & Kristian Hveem

  62. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK

    John R B Perry, Beverley M Shields, Michael N Weedon, Andrew T Hattersley & Timothy M Frayling

  63. Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, UK

    John R B Perry, Beverley M Shields, Michael N Weedon, Andrew T Hattersley & Timothy M Frayling

  64. Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany

    Wolfgang Rathmann & Klaus Strassburger

  65. Department of Human Genetics, McGill University, Montreal, Canada

    Ghislain Rocheleau & Rob Sladek

  66. Department of Medicine, Faculty of Medicine, McGill University, Montreal, Canada

    Ghislain Rocheleau & Rob Sladek

  67. McGill University and Genome Quebec Innovation Centre, Montreal, Canada

    Ghislain Rocheleau & Rob Sladek

  68. Department of Metabolic Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

    Michael Roden

  69. Department of Endocrinology and Diabetes, Norfolk and Norwich University Hospital National Health Service Trust, Norwich, UK

    Michael J Sampson

  70. General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA

    Peter Shrader & James B Meigs

  71. Institut interrégional pour la Santé (IRSA), La Riche, France

    Jean Tichet

  72. Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland

    Tiinamaija Tuomi & Leif Groop

  73. Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands

    Timon W van Haeften

  74. Department of Pathology and Medical Biology, Molecular Genetics, Medical Biology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands

    Jana V van Vliet-Ostaptchouk

  75. Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands

    Cisca Wijmenga

  76. Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles, California, USA

    Richard N Bergman & Richard M Watanabe

  77. National Institute of Health, Bethesda, Maryland, USA

    Francis S Collins

  78. Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden

    Ulf Gyllensten

  79. University of Southern Denmark, Odense, Denmark

    Torben Hansen

  80. Centre for Diabetes, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

    Graham A Hitman

  81. Department of Medicine, The Hospital of Levanger, Levanger, Norway

    Kristian Hveem

  82. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA

    Karen L Mohlke

  83. Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy

    Peter P Pramstaller

  84. Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia

    Igor Rudan

  85. Institute for Clinical Medical Research, University Hospital 'Sestre Milosrdnice', Zagreb, Croatia

    Igor Rudan

  86. Department of Public Health, University of Helsinki, Helsinki, Finland

    Jaakko Tuomilehto

  87. South Ostrobothnia Central Hospital, Seinäjoki, Finland

    Jaakko Tuomilehto

  88. Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, Madrid, Spain

    Jaakko Tuomilehto

  89. Diabetes Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK

    Mark Walker

  90. Department of Preventative Medicine, Keck Medical School, University of Southern California, Los Angeles, California, USA

    Richard M Watanabe

  91. Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA

    James S Pankow

  92. Department of Biomedical Science, Panum, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark

    Oluf Pedersen

  93. Faculty of Health Science, University of Aarhus, Aarhus, Denmark

    Oluf Pedersen

  94. Klinikum Grosshadern, Munich, Germany

    H-Erich Wichmann

  95. Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA

    Jose C Florez & David Altshuler

  96. Faculty of Medicine, University of Iceland, Reykjavík, Iceland

    Unnur Thorsteinsdottir & Kari Stefansson

  97. Genomic Medicine, Imperial College London, Hammersmith Hospital, London, UK

    Philippe Froguel

  98. Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK

    Mark I McCarthy

Authors
  1. Benjamin F Voight
  2. Laura J Scott
  3. Valgerdur Steinthorsdottir
  4. Andrew P Morris
  5. Christian Dina
  6. Ryan P Welch
  7. Eleftheria Zeggini
  8. Cornelia Huth
  9. Yurii S Aulchenko
  10. Gudmar Thorleifsson
  11. Laura J McCulloch
  12. Teresa Ferreira
  13. Harald Grallert
  14. Najaf Amin
  15. Guanming Wu
  16. Cristen J Willer
  17. Soumya Raychaudhuri
  18. Steve A McCarroll
  19. Claudia Langenberg
  20. Oliver M Hofmann
  21. Josée Dupuis
  22. Lu Qi
  23. Ayellet V Segrè
  24. Mandy van Hoek
  25. Pau Navarro
  26. Kristin Ardlie
  27. Beverley Balkau
  28. Rafn Benediktsson
  29. Amanda J Bennett
  30. Roza Blagieva
  31. Eric Boerwinkle
  32. Lori L Bonnycastle
  33. Kristina Bengtsson Boström
  34. Bert Bravenboer
  35. Suzannah Bumpstead
  36. Noisël P Burtt
  37. Guillaume Charpentier
  38. Peter S Chines
  39. Marilyn Cornelis
  40. David J Couper
  41. Gabe Crawford
  42. Alex S F Doney
  43. Katherine S Elliott
  44. Amanda L Elliott
  45. Michael R Erdos
  46. Caroline S Fox
  47. Christopher S Franklin
  48. Martha Ganser
  49. Christian Gieger
  50. Niels Grarup
  51. Todd Green
  52. Simon Griffin
  53. Christopher J Groves
  54. Candace Guiducci
  55. Samy Hadjadj
  56. Neelam Hassanali
  57. Christian Herder
  58. Bo Isomaa
  59. Anne U Jackson
  60. Paul R V Johnson
  61. Torben Jørgensen
  62. Wen H L Kao
  63. Norman Klopp
  64. Augustine Kong
  65. Peter Kraft
  66. Johanna Kuusisto
  67. Torsten Lauritzen
  68. Man Li
  69. Aloysius Lieverse
  70. Cecilia M Lindgren
  71. Valeriya Lyssenko
  72. Michel Marre
  73. Thomas Meitinger
  74. Kristian Midthjell
  75. Mario A Morken
  76. Narisu Narisu
  77. Peter Nilsson
  78. Katharine R Owen
  79. Felicity Payne
  80. John R B Perry
  81. Ann-Kristin Petersen
  82. Carl Platou
  83. Christine Proença
  84. Inga Prokopenko
  85. Wolfgang Rathmann
  86. N William Rayner
  87. Neil R Robertson
  88. Ghislain Rocheleau
  89. Michael Roden
  90. Michael J Sampson
  91. Richa Saxena
  92. Beverley M Shields
  93. Peter Shrader
  94. Gunnar Sigurdsson
  95. Thomas Sparsø
  96. Klaus Strassburger
  97. Heather M Stringham
  98. Qi Sun
  99. Amy J Swift
  100. Barbara Thorand
  101. Jean Tichet
  102. Tiinamaija Tuomi
  103. Rob M van Dam
  104. Timon W van Haeften
  105. Thijs van Herpt
  106. Jana V van Vliet-Ostaptchouk
  107. G Bragi Walters
  108. Michael N Weedon
  109. Cisca Wijmenga
  110. Jacqueline Witteman
  111. Richard N Bergman
  112. Stephane Cauchi
  113. Francis S Collins
  114. Anna L Gloyn
  115. Ulf Gyllensten
  116. Torben Hansen
  117. Winston A Hide
  118. Graham A Hitman
  119. Albert Hofman
  120. David J Hunter
  121. Kristian Hveem
  122. Markku Laakso
  123. Karen L Mohlke
  124. Andrew D Morris
  125. Colin N A Palmer
  126. Peter P Pramstaller
  127. Igor Rudan
  128. Eric Sijbrands
  129. Lincoln D Stein
  130. Jaakko Tuomilehto
  131. Andre Uitterlinden
  132. Mark Walker
  133. Nicholas J Wareham
  134. Richard M Watanabe
  135. Gonçalo R Abecasis
  136. Bernhard O Boehm
  137. Harry Campbell
  138. Mark J Daly
  139. Andrew T Hattersley
  140. Frank B Hu
  141. James B Meigs
  142. James S Pankow
  143. Oluf Pedersen
  144. H-Erich Wichmann
  145. Inês Barroso
  146. Jose C Florez
  147. Timothy M Frayling
  148. Leif Groop
  149. Rob Sladek
  150. Unnur Thorsteinsdottir
  151. James F Wilson
  152. Thomas Illig
  153. Philippe Froguel
  154. Cornelia M van Duijn
  155. Kari Stefansson
  156. David Altshuler
  157. Michael Boehnke
  158. Mark I McCarthy

Consortia

The MAGIC investigators

The GIANT Consortium

Contributions

Manuscript writing: B.F.V., L.J.S., V.S., A.P.M., C.D., E.Z., T.F., T.M.F., R. Sladek, U.T., D.A., M.B., M.I.M.

Clinical samples: A.P.M., H.G., C.L., L.Q., M.v.H., P. Navarro, K.A., B. Balkau, R. Benediktsson, R. Blagieva, L.L.B., K.B.B., B. Bravenboer, N.P.B., G. Charpentier, M.C., A.S.F.D., C.S. Fox, C. Gieger, N.G., S.G., S.H., C. Herder, B.I., T.J., P.K., J.K., T.L., A.L., V.L., M.M., T.M., K.M., P. Nilsson, K.R.O., C. Platou, W.R., M.R., M.J.S., B.M.S., G.S., T.S., K. Strassburger, Q.S., B.T., J. Tichet, T.T., R.M.v.D., T.W.v.H., T.v.H., J.V.v.V.-O., C.W., R.N.B., F.S.C., U.G., T.H., G.A.H., D.J.H., K.H., M.Laakso, K.L.M., A.D.M., C.N.A.P., P.P.P., I.R., E.S., J. Tuomilehto, M.W., N.J.W., B.O.B., H.C., A.T.H., F.B.H., J.B.M., J.S.P., O.P., T.M.F., L.G., R. Sladek, U.T., H.-E.W., J.F.W., T.I., P.F., C.M.v.D., K. Stefansson, D.A., M.B., M.I.M.

Stage 1 genotyping and analysis: B.F.V., L.J.S., V.S., A.P.M., C.D., E.Z., C. Huth, Y.S.A., G.T., T.F., H.G., N.A., C.J.W., C.L., A.V.S., M.v.H., P. Navarro, K.A., R. Benediktsson, A.J.B., L.L.B., K.B.B., S.B., N.P.B., G. Charpentier, P.S.C., M.C., G. Crawford, M.R.E., M.G., N.G., C.J.G., C. Guiducci, C. Herder, B.I., A.U.J., N.K., T.L., C.M.L., V.L., M.M., T.M., M.A.M., N.N., P. Nilsson, F.P., G.R., R. Saxena, T.S., K. Strassburger, H.M.S., A.J.S., T.T., R.M.v.D., G.B.W., J.W., R.N.B., S.C., F.S.C., U.G., K.L.M., I.R., E.S., J. Tuomilehto, A.U., N.J.W., H.C., F.B.H., T.M.F., L.G., R. Sladek, U.T., H.-E.W., J.F.W., T.I., P.F., C.M.v.D., K. Stefansson, D.A., M.B., M.I.M.

Stage 2 genotyping and analysis: B.F.V., L.J.S., V.S., A.P.M., C.D., C. Huth, Y.S.A., G.T., H.G., N.A., C.J.W., C.L., J.D., L.Q., M.v.H., P. Navarro, K.A., A.J.B., E.B., L.L.B., K.B.B., S.B., N.P.B., P.S.C., M.C., D.J.C., G. Crawford, A.S.F.D., M.R.E., C.S. Franklin, M.G., C. Gieger, N.G., S.G., C.J.G., C. Guiducci, N.H., C. Herder, B.I., A.U.J., T.J., W.H.L.K., N.K., A.K., P.K., J.K., T.L., M. Li, C.M.L., V.L., T.M., K.M., M.A.M., N.N., P. Nilsson, F.P., A.-K.P., C. Proença, I.P., W.R., N.W.R., N.R.R., G.R., M.R., M.J.S., P.S., T.S., K. Strassburger, H.M.S., Q.S., A.J.S., T.T., R.M.v.D., T.W.v.H., J.V.v.V.-O., G.B.W., M.N.W., C.W., J.W., R.N.B., S.C., F.S.C., U.G., T.H., D.J.H., K.H., M. Laakso, K.L.M., A.D.M., C.N.A.P., P.P.P., I.R., E.S., J. Tuomilehto, A.U., N.J.W., H.C., M.J.D., F.B.H., J.S.P., O.P., I.B., J.C.F., T.M.F., L.G., R. Sladek, H.-E.W., U.T., J.F.W., T.I., P.F., C.M.v.D., D.A., M.B., M.I.M.

Analysis group: B.F.V., L.J.S., V.S., A.P.M., R.P.W., C.D., E.Z., C. Huth, Y.S.A., G.T., T.F., H.G., N.A., C.J.W., J.D., M.v.H., M.G., C. Gieger, A.U.J., N.K., A.K., J.R.B.P., A.-K.P., N.W.R., N.R.R., R. Saxena, M.J.D., P.F., M.B., M.I.M.

Biological analyses: V.S., G.T., L.J.M., S.A.M., J.D., K.S.E., A.L.E., P.R.V.J., V.L., I.P., A.L.G., J.B.M., U.T., K. Stefansson, M.I.M.

Informatics analyses: B.F.V., V.S., G.W., S.R., O.M.H., A.V.S., T.G., W.A.H., L.D.S.

DIAGRAM consortium management: B.F.V., L.J.S., V.S., A.P.M., C.D., E.Z., R.N.B., S.C., F.S.C., A.H., K.L.M., E.S., J. Tuomilehto, R.M.W., G.R.A., H.C., M.J.D., A.T.H., T.M.F., L.G., R. Sladek, U.T., H.-E.W., J.F.W., T.I., P.F., C.M.v.D., K. Stefansson, D.A., M.B., M.I.M.

Corresponding authors

Correspondence to James F Wilson, Thomas Illig, Philippe Froguel, Cornelia M van Duijn, Kari Stefansson, David Altshuler, Michael Boehnke or Mark I McCarthy.

Ethics declarations

Competing interests

V.S., G.T., G.B.W, A.K., U.T. and K.S. are employed by deCODE Genetics. R.M.W. has pharmaceutical funding. J.B.M. currently has research grants from GlaxoSmithKline and Sanofi-Aventis and serves on consultancy boards for Eli Lilly and Interleukin Genetics. J.C.F. has received consulting honoraria from Merck, bioStrategies, XOMA and Daiichi-Sankyo and has been a paid invited speaker at internal scientific seminars hosted by Pfizer and Alnylam Pharmaceuticals. R.M.W. has received consulting honoraria from Merck & Co. and Vivus Inc., currently has a grant from Merck & Co. and received research material support from Takeda Pharmaceuticals North America.

Additional information

A full list of members is provided in the Supplementary Note.

A full list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1 and 2 and Supplementary Tables 1–6 (PDF 9274 kb)

About this article

Cite this article

Voight, B., Scott, L., Steinthorsdottir, V. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42, 579–589 (2010). https://doi.org/10.1038/ng.609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng.609

Search

Advanced search

Quick links

[画像:Nature Briefing]

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

AltStyle によって変換されたページ (->オリジナル) /