Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of inverse Compton emission from a long γ-ray burst

Nature volume 575, pages 459–463 (2019)Cite this article

Abstract

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2 . Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1,2,3,4,5,6 . The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7,8,9 . Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11 . Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 ×ばつ 10−6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multi-wavelength light curves of GRB 190114C.
Fig. 2: Multi-band spectra in the time interval 68–2,400 s.
Fig. 3: Modelling of the broadband spectra in the time intervals 68–110 s and 110–180 s.

Similar content being viewed by others

Data availability

Data are available from the corresponding authors upon request.

Code availability

Proprietary data reconstruction codes were generated at the MAGIC telescope large-scale facility. Information supporting the findings of this study is available from the corresponding authors upon request. Source data for Figs. 2, 3 are provided with the paper.

References

  1. Mészáros, P. Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002).

    ADS Google Scholar

  2. Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2005).

    ADS Google Scholar

  3. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000).

    ADS Google Scholar

  4. Gehrels, N., Ramirez-Ruiz, E. & Fox, D. B. Gamma-ray bursts in the Swift era. Annu. Rev. Astron. Astrophys. 47, 567–617 (2009).

    ADS CAS Google Scholar

  5. Gehrels, N. & Mészáros, P. Gamma-ray bursts. Science 337, 932–936 (2012).

    ADS CAS PubMed Google Scholar

  6. Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1–109 (2015).

    ADS Google Scholar

  7. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, 17–20 (1998).

    ADS Google Scholar

  8. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002).

    ADS CAS Google Scholar

  9. Mészáros, P. & Rees, M. J. Delayed GeV emission from cosmological gamma-ray bursts – impact of a relativistic wind on external matter. Mon. Not. R. Astron. Soc. 269, L41–L43 (1994).

    ADS CAS Google Scholar

  10. MAGIC Collaboration. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature https://doi.org/10.1038/s41586-019-1750-x (2019).

  11. Mirzoyan, R. et al. MAGIC detects the GRB 190114C in the TeV energy domain. GCN Circulars 23701 https//gcn.gsfc.nasa.gov/gcn3/23701.gcn3 (2019).

  12. Nava, L. High-energy emission from gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842003 (2018).

    ADS CAS Google Scholar

  13. Mirzoyan, R. et al. MAGIC detects the GRB 190114C. The Astronomer’s Telegram 12390 http://www.astronomerstelegram.org/?read=12390 (2019).

  14. Ajello, M. et al. Fermi and Swift observations of GRB 190114C: tracing the evolution of high-energy emission from prompt to afterglow. Preprint at https://arxiv.org/abs/1909.10605 (2019).

  15. Ravasio, M. E. et al. GRB 190114C: from prompt to afterglow? Astron. Astrophys. 626, A12 (2019).

    CAS Google Scholar

  16. Laskar, T. et al. ALMA detection of a linearly polarized reverse shock in GRB 190114C. Astrophys. J. Lett. 878, 26 (2019).

    ADS Google Scholar

  17. Vietri, M. GeV photons from ultrahigh energy cosmic rays accelerated in gamma ray bursts. Phys. Rev. Lett. 78, 4328–4331 (1997).

    ADS CAS Google Scholar

  18. Zhang, B. & Mészáros, P. High-energy spectral components in gamma-ray burst afterglows. Astrophys. J. 559, 110–122 (2001).

    Article ADS CAS Google Scholar

  19. Razzaque, S. A leptonic–hadronic model for the afterglow of gamma-ray burst 090510. Astrophys. J. Lett. 724, 109–112 (2010).

    ADS Google Scholar

  20. Sari, R. & Esin, A. A. On the synchrotron self-Compton emission from relativistic shocks and its implications for gamma-ray burst afterglows. Astrophys. J. 548, 787–799 (2001).

    ADS Google Scholar

  21. Mészáros, P., Razzaque, S. & Zhang, B. GeV–TeV emission from γ-ray bursts. New Astron. Rev. 48, 445–451 (2004).

    ADS Google Scholar

  22. Lemoine, M. The synchrotron self-Compton spectrum of relativistic blast waves at large Y. Mon. Not. R. Astron. Soc. 453, 3772–3784 (2015).

    ADS CAS Google Scholar

  23. Fan, Y.-Z. & Piran, T. High-energy γ-ray emission from gamma-ray bursts – before GLAST. Front. Phys. China 3, 306–330 (2008).

    ADS Google Scholar

  24. Galli, A. & Piro, L. Prospects for detection of very high-energy emission from GRB in the context of the external shock model. Astron. Astrophys. 489, 1073–1077 (2008).

    ADS CAS Google Scholar

  25. Nakar, E., Ando, S. & Sari, R. Klein–Nishina effects on optically thin synchrotron and synchrotron self-Compton spectrum. Astrophys. J. 703, 675–691 (2009).

    ADS CAS Google Scholar

  26. Xue, R. R. et al. Very high energy γ-ray afterglow emission of nearby gamma-ray bursts. Astrophys. J. 703, 60–67 (2009).

    ADS Google Scholar

  27. Piran, T. & Nakar, E. On the external shock synchrotron model for gamma-ray bursts’ GeV emission. Astrophys. J. Lett. 718, 63–67 (2010).

    ADS Google Scholar

  28. Tam, P.-H. T., Tang, Q.-W., Hou, S.-J., Liu, R.-Y. & Wang, X.-Y. Discovery of an extra hard spectral component in the high-energy afterglow emission of GRB 130427A. Astrophys. J. Lett. 771, 13 (2013).

    ADS Google Scholar

  29. Liu, R.-Y., Wang, X.-Y. & Wu, X.-F. Interpretation of the unprecedentedly long-lived high-energy emission of GRB 130427A. Astrophys. J. Lett. 773, 20 (2013).

    ADS Google Scholar

  30. Ackermann, M. et al. Fermi-LAT observations of the gamma-ray burst GRB 130427A. Science 343, 42–47 (2014).

    ADS CAS PubMed Google Scholar

  31. Wang, X.-Y., Liu, R.-Y., Zhang, H.-M., Xi, S.-Q. & Zhang, B. Synchrotron self-Compton emission from afterglow shocks as the origin of the sub-TeV emission in GRB 180720B and GRB 190114C. Astrophys. J. 884, 117–121 (2019)

  32. Hamburg, R. GRB 190114C: Fermi GBM detection. GCN Circulars 23707 https://gcn.gsfc.nasa.gov/gcn3/23707.gcn3 (2019).

  33. Kocevski, D. et al. GRB 190114C: Fermi-LAT detection. GCN Circulars 23709 https://gcn.gsfc.nasa.gov/gcn3/23709.gcn3 (2019).

  34. Gropp, J. D. GRB 190114C: Swift detection of a very bright burst with a bright optical counterpart. GCN Circulars 23688 https://gcn.gsfc.nasa.gov/gcn3/23688.gcn3 (2019).

  35. Ursi, A. et al. GRB 190114C: AGILE/MCAL detection. GCN Circulars 23712 https://gcn.gsfc.nasa.gov/gcn3/23712.gcn3 (2019).

  36. Frederiks, D. et al. Konus-Wind observation of GRB 190114C. GCN Circulars 23737 https://gcn.gsfc.nasa.gov/gcn3/23737.gcn3 (2019).

  37. Minaev, P. & Pozanenko, A. GRB 190114C: SPI-ACS/INTEGRAL extended emission detection. GCN Circulars 23714 https://gcn.gsfc.nasa.gov/gcn3/23714.gcn3 (2019).

  38. Xiao, S. et al. GRB 190114C: Insight-HXMT/HE detection. GCN Circulars 23716 https://gcn.gsfc.nasa.gov/gcn3/23716.gcn3 (2019).

  39. Tavani, M. et al. The AGILE mission. Astron. Astrophys. 502, 995–1013 (2009).

    ADS Google Scholar

  40. Goldstein, A. et al. The Fermi GBM gamma-ray burst spectral catalog: the first two years. Astrophys. J. Suppl. Ser. 199, 19 (2012).

    ADS Google Scholar

  41. Meegan, C. et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 702, 791–804 (2009).

    ADS CAS Google Scholar

  42. Barthelmy, S. D. et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 120, 143–164 (2005).

    ADS Google Scholar

  43. Atwood, A. A. et al. The Large Area Telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    ADS CAS Google Scholar

  44. Aleksić, J. et al. The major upgrade of the MAGIC telescopes, part II: a performance study using observations of the Crab Nebula. Astropart. Phys. 72, 76–94 (2016).

    ADS Google Scholar

  45. Ahnen, M. L. et al. Performance of the MAGIC telescopes under moonlight. Astropart. Phys. 94, 29–41 (2017).

    ADS Google Scholar

  46. Domínguez, A. et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 410, 2556–2578 (2011).

    ADS Google Scholar

  47. Franceschini, A., Rodighiero, G. & Vaccari, M. Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 487, 837–852 (2008).

    ADS CAS Google Scholar

  48. Finke, J. D., Razzaque, S. & Dermer, C. D. Modeling the extragalactic background light from stars and dust. Astrophys. J. 712, 238–249 (2010).

    ADS Google Scholar

  49. Gilmore, R. C., Somerville, R. S., Primack, J. R. & Domínguez, A. Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc. 422, 3189–3207 (2012).

    ADS Google Scholar

  50. UK Swift Science Data Centre. GRB 190114C Swift-XRT light curve https://www.swift.ac.uk/xrt_curves/00883832/.

  51. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS CAS Google Scholar

  52. Greiner, J. et al. GROND—a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405–424 (2008).

    ADS Google Scholar

  53. Tody, D. in Astronomical Data Analysis Software and Systems II, ASP Conference Series Vol. 52 (eds Hanisch, R. J. et al.) 173–183 (1993).

  54. Krühler, T. et al. The 2175 Å dust feature in a gamma-ray burst afterglow at redshift 2.45. Astrophys. J. 685, 376–383 (2008).

    ADS Google Scholar

  55. Bolmer, J. et al. Dust reddening and extinction curves toward gamma-ray bursts at z > 4. Astron. Astrophys. 609, A62 (2018).

    Google Scholar

  56. Castro-Tirado, A. J. et al. A very sensitive all-sky CCD camera for continuous recording of the night sky. In Proc. SPIE, Advanced Software and Control for Astronomy II Vol. 7019 (SPIE, 2008).

  57. Cepa, J. et al. OSIRIS tunable imager and spectrograph. In In Proc. SPIE Optical and IR Telescope Instrumentation and Detectors Vol. 4008 (eds Iye, M. & Moorwood, A. F.) 623–631 (SPIE, 2000).

  58. Castro-Tirado, A. GRB 190114C: refined redshift by the 10.4m GTC. GCN Circulars 23708 https://gcn.gsfc.nasa.gov/gcn3/23708.gcn3 (2019).

  59. de Ugarte Postigo, A. et al. The distribution of equivalent widths in long GRB afterglow spectra. Astron. Astrophys. 548, A11 (2012).

    Google Scholar

  60. Steele, I. A. et al. The Liverpool Telescope: performance and first results. In Proc. SPIE Ground-based Telescopes Vol. 5489 (ed. Oschmann, J. M. Jr) 679–692 (SPIE, 2004).

  61. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  62. Tarenghi, M. & Wilson, R. N. The ESO NTT (New Technology Telescope): the first active optics telescope. In Proc. SPIE Active Telescope Systems Vol. 1114 (ed. Roddier, F. J.) 302–313 (SPIE, 1989).

  63. Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Google Scholar

  64. Covino, S. et al. REM: a fully robotic telescope for GRB observations. In Proc. SPIE Ground-based Instrumentation for Astronomy Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 1613–1622 (SPIE, 2004).

  65. Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS Google Scholar

  66. Siegel, M. H. & Gropp, J. D. GRB 190114C: Swift/UVOT detection. GCN Circulars 23725 https://gcn.gsfc.nasa.gov/gcn3/23725.gcn3 (2019).

  67. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).

    ADS CAS Google Scholar

  68. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. In American Institute of Physics Conference Series Vol. 1358, 373–376 (AIP, 2011).

  69. Kuin, N. P. M. et al. Calibration of the Swift-UVOT ultraviolet and visible grisms. Mon. Not. R. Astron. Soc. 449, 2514–2538 (2015).

    ADS Google Scholar

  70. Arnouts, S. et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North. Mon. Not. R. Astron. Soc. 310, 540–556 (1999).

    ADS Google Scholar

  71. Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).

    ADS Google Scholar

  72. Covino, S. et al. Dust extinctions for an unbiased sample of gamma-ray burst afterglows. Mon. Not. R. Astron. Soc. 432, 1231–1244 (2013).

    ADS Google Scholar

  73. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS Google Scholar

  74. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI, Vol. 376 (eds Shaw, R. A. et al.) 127 (ASP, 2007).

  75. Wilson, W. E. et al. The Australia Telescope Compact Array broad-band backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).

    ADS Google Scholar

  76. Sault, R. J., Teuben, P. J. & Wright, M. C. H. A retrospective view of MIRIAD. In Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A. et al.) 433 (ASP, 1995).

  77. Swarup, G. et al. The Giant Metre-wave Radio Telescope. Current Science 60, 95–105 (1991).

    Google Scholar

  78. Cherukuri, S. V. et al. GRB 190114C: GMRT detection at 1.26GHz. GCN Circulars 23762 https://gcn.gsfc.nasa.gov/gcn3/23762.gcn3 (2019).

  79. Tremou, L. et al. GRB 190114C: MeerKAT radio observation. GCN Circulars 23760 https://gcn.gsfc.nasa.gov/gcn3/23760.gcn3 (2019).

  80. Camilo, F. et al. Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astrophys. J. 856, 180 (2018).

    ADS Google Scholar

  81. Jonas, J. L. & The MeerKAT Team. The MeerKAT Radio Telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA 001 (2016).

  82. Fender, R. et al. ThunderKAT: the MeerKAT large survey project for image-plane radio transients. Preprint at https://arxiv.org/abs/1711.04132 (2017).

  83. Mohan, N. & Rafferty, D. PyBDSF: Python Blob Detection and Source Finder https://www.astron.nl/citt/pybdsf/ (2015)

  84. Holland, W. S. et al. SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 430, 2513–2533 (2013).

    ADS Google Scholar

  85. Bošnjak, Ž., Daigne, F. & Dubus, G. Prompt high-energy emission from gamma-ray bursts in the internal shock model. Astron. Astrophys. 498, 677–703 (2009).

    ADS MATH Google Scholar

  86. Panaitescu, A. & Kumar, P. Analytic light curves of gamma-ray burst afterglows: homogeneous versus wind external media. Astrophys. J. 543, 66–76 (2000).

    ADS Google Scholar

  87. Derishev, E. & Piran, T. The physical conditions of the afterglow implied by MAGIC’s sub-TeV observations of GRB 190114C. Astrophys. J. Lett. 880, 27 (2019).

    ADS Google Scholar

  88. Mastichiadis, A. & Kirk, J. G. Self-consistent particle acceleration in active galactic nuclei. Astron. Astrophys. 295, 613 (1995).

    ADS CAS Google Scholar

  89. Vurm, I. & Poutanen, J. Time-dependent modeling of radiative processes in hot magnetized plasmas. Astrophys. J. 698, 293–316 (2009).

    ADS CAS Google Scholar

  90. Petropoulou, M. & Mastichiadis, A. On the multiwavelength emission from gamma ray burst afterglows. Astron. Astrophys. 507, 599–610 (2009).

    ADS CAS Google Scholar

  91. Pennanen, T., Vurm, I. & Poutanen, J. Simulations of gamma-ray burst afterglows with a relativistic kinetic code. Astron. Astrophys. 564, A77 (2014).

    ADS Google Scholar

Download references

Acknowledgements

We thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. We acknowledge financial support by the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2017-87859-P, FPA2017-85668-P, FPA2017-82729-C6-2-R, FPA2017-82729-C6-6-R, FPA2017-82729-C6-5-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2017-87055-C2-2-P, FPA201790566REDC), the Indian Department of Atomic Energy, the Japanese JSPS and MEXT, the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018 and the Academy of Finland grant number 320045. This work was also supported by the Spanish Centro de Excelencia ‘Severo Ochoa’ through grants SEV-2016-0588 and SEV-2015-0548 and Unidad de Excelencia ‘María de Maeztu’ MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382 and by the Brazilian MCTIC, CNPq and FAPERJ. L. Nava acknowledges funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie grant agreement number 664931. E. Moretti acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement number 665919. This study used the following ALMA data: ADS/JAO.ALMA#2018.A.00020.T, ADS/JAO.ALMA#2018年1月01日410.T. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. C.C.T., A.d.U.P. and D.A.K. acknowledge support from the Spanish research project AYA2017-89384-P. C.C.T and A.d.U.P. acknowledge support from funding associated with Ramón y Cajal fellowships (RyC-2012-09984 and RyC-2012-09975). D.A.K. acknowledges support from funding associated with Juan de la Cierva Incorporación fellowships (IJCI-2015-26153). The JCMT is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan, Academia Sinica Institute of Astronomy and Astrophysics, the Korea Astronomy and Space Science Institute, and Center for Astronomical Mega-Science (as well as the National Key R&D Program of China via grant number 2017YFA0402700). Additional funding support is provided by the Science and Technology Facilities Council of the UK and participating universities in the UK and Canada. The JCMT data reported here were obtained under project M18BP040 (principal investigator D.A.P.). We thank M. Rawlings, K. Silva, S. Urquart and the JCMT staff for support for these observations. The Liverpool Telescope, located on the island of La Palma, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, is operated by Liverpool John Moores University with financial support from the UK Science and Technology Facilities Council. The Australia Telescope Compact Array is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIRO. G.E.A. is the recipient of an Australian Research Council Discovery Early Career Researcher Award (project number DE180100346) and J.C.A.M.-J. is the recipient of an Australian Research Council Future Fellowship (project number FT140101082) funded by the Australian Government. Support for the German contribution to GBM was provided by the Bundesministerium für Bildung und Forschung (BMBF) via the Deutsches Zentrum für Luft und Raumfahrt (DLR) under grant number 50 QV 0301. The University of Alabama in Huntsville (UAH) coauthors acknowledge NASA funding from cooperative agreement NNM11AA01A. C.A.W.-H. and C.M.H. acknowledge NASA funding through the Fermi-GBM project. The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes that have supported both the development and the operation of the LAT, as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy (DOE) in the USA; the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. We acknowledge additional support for science analysis during the operations phase from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France. This work was performed in part under DOE contract DE-AC02-76SF00515. Part of the funding for GROND (both hardware and personnel) was granted from the Leibniz-Prize to G. Hasinger (DFG grant HA 1850/28-1). Swift data were retrieved from the Swift archive at HEASARC/NASA-GSFC and from the UK Swift Science Data Centre. Support for Swift in the UK is provided by the UK Space Agency. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work is partially based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 199.D-0143. The work is partly based on observations made with the GTC, installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. This work is partially based on observations made with the NOT (programme 58-502), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias. This work is partially based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 102.D-0662. This work is partially based on observations collected through the ESO programme 199.D-0143 ePESSTO. M. Gromadzki is supported by the Polish NCN MAESTRO grant 2014/14/A/ST9/00121. M.N. is supported by a Royal Astronomical Society Research Fellowship M.G.B., S. Campana, A. Melandri and P.D’A. acknowledge ASI grant I/004/11/3. S. Campana acknowledges support from agreement ASI-INAF number 2017-14-H.0. S.J.S. acknowledges funding from STFC grant ST/P000312/1. N.P.M.K. acknowledges support by the UK Space Agency under grant ST/P002323/1 and the UK Science and Technology Facilities Council under grant ST/N00811/1. L.P. and S. Lotti acknowledge partial support from agreement ASI-INAF number 2017-14-H.0. A.F.V. acknowledges RFBR 18-29-21030 for support. A.J.C.-T. acknowledges support from the Junta de Andalucía (Project P07-TIC-03094) and from the Spanish Ministry Projects AYA2012-39727-C03-01 and 2015-71718R. K. Misra acknowledges support from the Department of Science and Technology (DST), Government of India and the Indo-US Science and Technology Forum (IUSSTF) for the WISTEMM fellowship and Departnment of Physics, UC Davis, where a part of this work was carried out. S.B.P. and K. Misra acknowledge BRICS (Brazil, Russia, India, China and South Africa) grant DST/IMRCD/BRICS/Pilotcall/ProFCheap/2017(G) for this work. M.J.M. acknowledges the support of the National Science Centre, Poland, through grant 2018/30/E/ST9/00208. V.J. and L.R. acknowledge support from grant EMR/2016/007127 from the Department of Science and Technology, India. K. Maguire acknowledges support from H2020 through an ERC starting grant (758638). L.I. acknowledges M. Della Valle for support in the operation of the telescope.

Author information

Authors and Affiliations

  1. Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL, USA

    E. Colombo, R. J. García López, J. Herrera, A. López-Oramas, A. Somero, G. Vanzo, M. Vazquez Acosta, P. Veres, P. N. Bhat, M. S. Briggs, R. Hamburg, B. Mailyan & R. D. Preece

  2. Space Science Department, University of Alabama in Huntsville, Huntsville, AL, USA

    P. N. Bhat, M. S. Briggs, R. Hamburg & R. D. Preece

  3. Science and Technology Institute, Universities Space Research Association, Huntsville, AL, USA

    W. H. Cleveland & O. J. Roberts

  4. Astrophysics Branch, ST12, NASA/Marshall Space Flight Center, Huntsville, AL, USA

    A. Stamerra, F. Tavecchio, L. Nava, C. M. Hui, C. A. Wilson-Hodge & D. Kocevski

  5. Max-Planck Institut für extraterrestrische Physik, Garching, Germany

    A. von Kienlin, J. Bolmer & J. Greiner

  6. Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan

    M. Arimoto

  7. Department of Physics, University of Maryland, College Park, MD, USA

    D. Tak & J. McEnery

  8. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    D. Tak, J. McEnery, J. L. Racusin, D. J. Thompson, S. B. Cenko & E. Troja

  9. Institute for Cosmic-Ray Research, University of Tokyo, Kashiwa, Japan

    K. Asano

  10. Department of Physics, Stockholm University, Stockholm, Sweden

    M. Axelsson

  11. Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

    M. Axelsson

  12. Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy

    L. Nava & G. Barbiellini

  13. Dipartimento di Fisica "M. Merlin" dell’Università e del Politecnico di Bari, Bari, Italy

    E. Bissaldi

  14. Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy

    E. Bissaldi

  15. Department of Physics, University of Johannesburg, Auckland Park, South Africa

    F. Fana Dirirsa & S. Razzaque

  16. Department of Natural Sciences, Open University of Israel, Ra’anana, Israel

    R. Gill & J. Granot

  17. W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics Stanford, Stanford, CA, USA

    N. Omodei

  18. SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA

    N. Omodei

  19. Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier, France

    F. Piron

  20. INAF, Astronomical Observatory of Brera, Merate, Italy

    S. Campana, M. G. Bernardini, G. Tagliaferri, P. D’Avanzo & A. Melandri

  21. Mullard Space Science Laboratory, University College London, Dorking, UK

    N. P. M. Kuin

  22. Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, USA

    M. H. Siegel, J. Gropp, N. Klingler & A. Tohuvavohu

  23. Joint Space-Science Institute, University of Maryland, College Park, MD, USA

    S. B. Cenko

  24. Department of Physics and Astronomy, University of Leicester, Leicester, UK

    P. O’Brien, J. P. Osborne, R. L. C. Starling & N. R. Tanvir

  25. INAF Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Palermo, Italy

    M. Capalbi, A. Daì & G. Tagliaferri

  26. Department of Astronomy and Space Sciences, Istanbul University, Istanbul, Turkey

    M. De Pasquale

  27. INAF, Osservatorio Astronomico di Roma, Rome, Italy

    M. Perri, F. Verrecchia, C. Pittori & F. Lucarelli

  28. Space Science Data Center (SSDC), Agenzia Spaziale Italiana (ASI), Rome, Italy

    M. Perri, F. Verrecchia, C. Pittori, F. Lucarelli, A. Bulgarelli & N. Parmiggiani

  29. INAF-IAPS, Rome, Italy

    A. Ursi, M. Tavani, M. Cardillo, C. Casentini, G. Piano, Y. Evangelista, S. Lotti, L. Piro & R. Sánchez-Ramírez

  30. Università "Tor Vergata", Rome, Italy

    M. Tavani

  31. Gran Sasso Science Institute, L’Aquila, Italy

    M. Tavani

  32. International Centre for Radio Astronomy Research, Curtin University, Perth, Western Australia, Australia

    G. E. Anderson & J. C. A. Miller-Jones

  33. European Southern Observatory, Santiago, Chile

    J. P. Anderson & S. Martin

  34. INAF Istituto di Radioastronomia, Bologna, Italy

    G. Bernardi & R. Ricci

  35. Department of Physics and Electronics, Rhodes University, Grahamstown, South Africa

    G. Bernardi & I. Heywood

  36. South African Radio Astronomy Observatory, Cape Town, South Africa

    G. Bernardi

  37. Astronomical Institute of the Academy of Sciences, Prague, Czech Republic

    M. D. Caballero-García

  38. Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain

    I. M. Carrasco

  39. Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain

    A. Castellón

  40. Physics and Astronomy Department, University of Southampton, Southampton, UK

    N. Castro Segura

  41. Unidad Asociada al CSIC Departamento de Ingeniería de Sistemas y Automática, E.T.S. de Ingenieros Industriales, Universidad de Málaga, Málaga, Spain

    A. J. Castro-Tirado & C. J. Pérez del Pulgar

  42. Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain

    A. J. Castro-Tirado, E. Fernández-García, Y.-D. Hu, L. Izzo, D. A. Kann, M. A. Pérez-Torres, C. C. Thöne & A. de Ugarte Postigo

  43. Indian Institute of Space Science & Technology, Trivandrum, India

    S. V. Cherukuri, V. Jaiswal & L. Resmi

  44. Astrophysics Research Institute, Liverpool John Moores University, Liverpool, UK

    A. M. Cockeram & D. A. Perley

  45. Osservatorio Astronomico ‘S. Di Giacomo’ AstroCampania, Agerola, Italy

    A. Di Dato & A. Noschese

  46. INAF - Astronomical Observatory of Naples, Naples, Italy

    A. Di Dato & F. Ragosta

  47. Inter-University Institute for Data-Intensive Astronomy, Department of Astronomy, University of Cape Town, Rondebosch, South Africa

    R. Diretse & P. A. Woudt

  48. Department of Physics, University of Oxford, Keble Road, Oxford, UK

    R. P. Fender & I. Heywood

  49. Cosmic Dawn Center (DAWN), Copenhagen, Denmark

    J. P. U. Fynbo & D. B. Malesani

  50. Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark

    J. P. U. Fynbo, D. B. Malesani & J. Selsing

  51. Space Telescope Science Institute, Baltimore, MD, USA

    A. S. Fruchter

  52. Astronomical Observatory, University of Warsaw, Warsaw, Poland

    M. Gromadzki

  53. Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Reykjavik, Iceland

    K. E. Heintz & P. Jakobsson

  54. Department of Physics, The George Washington University, Washington, DC, USA

    A. J. van der Horst & C. Kouveliotou

  55. Astronomy, Physics, and Statistics Institute of Sciences (APSIS), The George Washington University, Washington, DC, USA

    A. J. van der Horst & C. Kouveliotou

  56. Universidad de Granada, Facultad de Ciencias Campus Fuentenueva, Granada, Spain

    Y.-D. Hu

  57. School of Physics & Astronomy, Cardiff University, Cardiff, UK

    C. Inserra

  58. DARK, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    L. Izzo, D. B. Malesani & A. de Ugarte Postigo

  59. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, The Netherlands

    J. Japelj

  60. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku, Finland

    E. Kankare

  61. Thüringer Landessternwarte Tautenburg, Tautenburg, Germany

    S. Klose

  62. Department of Astrophysics/IMAPP, Radboud University, Nijmegen, The Netherlands

    A. J. Levan

  63. Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM/UMA-CSIC), Málaga, Spain

    X. Y. Li

  64. Nanjing Institute for Astronomical Optics and Technology, National Observatories, Chinese Academy of Sciences, Nanjing, China

    X. Y. Li

  65. School of Physics, Trinity College Dublin, Dublin, Ireland

    K. Maguire

  66. DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark

    D. B. Malesani

  67. Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot, Israel

    I. Manulis & O. Yaron

  68. Department of Physics and Earth Science, University of Ferrara, Ferrara, Italy

    M. Marongiu & E. Peretti

  69. International Center for Relativistic Astrophysics Network (ICRANet), Pescara, Italy

    M. Marongiu

  70. Joint ALMA Observatory, Santiago, Chile

    S. Martin

  71. Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland

    M. J. Michałowski

  72. Aryabhatta Research Institute of Observational Sciences, Nainital, India

    K. Misra & S. B. Pandey

  73. Department of Physics, University of California, Davis, CA, USA

    K. Misra

  74. Physics Department, United Arab Emirates University, Al-Ain, United Arab Emirates

    A. Moin & S. Nasri

  75. National Radio Astronomy Observatory, Socorro, NM, USA

    K. P. Mooley

  76. Caltech, Pasadena, CA, USA

    K. P. Mooley

  77. Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, UK

    M. Nicholl

  78. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham, UK

    M. Nicholl

  79. Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy

    G. Novara & A. Tiengo

  80. INAF – IASF Milano, Milan, Italy

    G. Novara & A. Tiengo

  81. INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy

    E. Peretti

  82. Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza, Spain

    M. A. Pérez-Torres

  83. Dipartimento di Scienze Fisiche, Università degli studi di Napoli Federico II, Naples, Italy

    F. Ragosta

  84. INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Naples, Italy

    F. Ragosta

  85. INAF Osservatorio di Astrofisica e Scienza dello Spazio, Bologna, Italy

    A. Rossi

  86. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

    S. Schulze

  87. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK

    S. J. Smartt & D. R. Young

  88. Department of Physics and Astronomy, Rice University, Houston, TX, USA

    I. A. Smith

  89. Special Astrophysical Observatory (SAO-RAS), Nizhniy Arkhyz, Russia

    V. V. Sokolov & A. F. Valeev

  90. CSIRO Australia Telescope National Facility, Paul Wild Observatory, Narrabri, New South Wales, Australia

    J. Stevens

  91. Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy

    A. Tiengo

  92. AIM, CEA, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Saclay, Gif-sur-Yvette, France

    E. Tremou

  93. Department of Astronomy, University of Maryland, College Park, MD, USA

    E. Troja

  94. GEPI, Observatoire de Paris, PSL University, CNRS, Meudon, France

    S. D. Vergani

  95. Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, New South Wales, Australia

    M. Wieringa

  96. CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China

    D. Xu

  97. Instituto de Astrofísica de Canarias and Departamento Astrofísica, Universidad de La Laguna, La Laguna, Spain

    V. A. Acciari & J. Becerra González

  98. Università di Udine and INFN Trieste, Udine, Italy

    S. Ansoldi, B. De Lotto, A. Donini, F. Longo, D. Miceli, M. Palatiello, M. Peresano & M. Persic

  99. Japanese MAGIC Consortium, Department of Physics, Kyoto University, Kyoto, Japan

    S. Ansoldi, H. Kubo & S. Nozaki

  100. National Institute for Astrophysics (INAF), Rome, Italy

    L. A. Antonelli, C. Bigongiari, S. Covino, V. D’Elia, F. Dazzi, G. Ferrara, A. Lamastra, F. Leone, S. Lombardi, L. Maraschi & C. Righi

  101. ETH Zurich, Zurich, Switzerland

    A. Arbet Engels & A. Biland

  102. Technische Universität Dortmund, Dortmund, Germany

    D. Baack, D. Elsaesser, A. Fattorini, W. Rhode & K. Schmidt

  103. Croatian Consortium, University of Zagreb, FER, Zagreb, Croatia

    A. Babić, Ž. Bošnjak & S. Cikota

  104. Saha Institute of Nuclear Physics, HBNI, Kolkata, India

    B. Banerjee & P. Majumdar

  105. Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

    U. Barres de Almeida & B. Machado de Oliveira Fraga

  106. IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, Madrid, Spain

    J. A. Barrio, J. L. Contreras, D. Fidalgo, M. V. Fonseca, J. Hoang, M. López, D. Morcuende, P. Peñil & L. Saha

  107. University of Łódź, Department of Astrophysics, Łódź, Poland

    W. Bednarek, J. Sitarek & D. Sobczynska

  108. Università di Siena and INFN Pisa, Siena, Italy

    L. Bellizzi, G. Bonnoli, J. M. Miranda & R. Paoletti

  109. Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany

    E. Bernardini, W. Bhattacharyya, M. Garczarczyk, C. Nigro & K. Satalecka

  110. Università di Padova and INFN, Padua, Italy

    E. Bernardini, G. Busetto, A. De Angelis, M. Doro, L. Foffano, R. López-Coto, M. Mallamaci, M. Mariotti, S. Paiano & E. Prandini

  111. Istituto Nazionale Fisica Nucleare (INFN), Frascati, Italy

    A. Berti, D. Depaoli, F. Di Pierro, L. Di Venere, N. Giglietto, F. Giordano, S. Loporchio, L. Tosti, V. Vagelli, C. F. Vigorito & V. Vitale

  112. Max-Planck-Institut für Physik, Munich, Germany

    J. Besenrieder, G. Ceribella, Y. Chai, U. Colin, C. Fruck, D. Green, A. Hahn, M. Hütten, K. Ishio, D. Mazin, R. Mirzoyan, D. Paneque, T. Schweizer, D. Strom, M. Strzys, Y. Suda, M. Teshima, J. van Scherpenberg, I. Vovk & M. Will

  113. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain

    O. Blanch, S. M. Colak, M. Delfino, J. Delgado, E. Do Souto Espiñeira, D. Guberman, L. Jouvin, D. Kerszberg, M. Martínez, A. Moralejo, E. Moretti, D. Ninci, L. Nogués & J. Rico

  114. Università di Pisa and INFN Pisa, Pisa, Italy

    R. Carosi, P. Da Vela, P. G. Prada Moroni & A. Rugliancich

  115. The Armenian Consortium, A. Alikhanyan National Laboratory, Yerevan, Armenia

    A. Chilingaryan

  116. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

    J. Cortina

  117. Port d’Informació Científica (PIC), Barcelona, Spain

    M. Delfino & J. Delgado

  118. Croatian Consortium, Department of Physics, University of Rijeka, Rijeka, Croatia

    D. Dominis Prester, M. Manganaro, S. Mićanović & T. Terzić

  119. Universität Würzburg, Würzburg, Germany

    D. Dorner & K. Mannheim

  120. Finnish MAGIC Consortium, Finnish Centre of Astronomy with ESO (FINCA), University of Turku, Turku, Finland

    V. Fallah Ramazani, E. Lindfors & K. Nilsson

  121. Departament de Física and CERES-IEEC, Universitat Autònoma de Barcelona, Bellaterra, Spain

    L. Font, M. Gaug, C. Maggio, V. Moreno & P. Munar-Adrover

  122. Japanese MAGIC Consortium, ICRR, The University of Tokyo, Kashiwa, Japan

    S. Fukami, D. Hadasch, T. Inada, Y. Iwamura, D. Mazin, K. Noda, T. Saito, S. Sakurai, M. Takahashi & M. Teshima

  123. The Armenian Consortium, ICRANet-Armenia at NAS RA, Yerevan, Armenia

    S. Gasparyan & N. Sahakyan

  124. Croatian Consortium, University of Split, FESB, Split, Croatia

    N. Godinović, D. Lelas, I. Puljak & D. Zarić

  125. Croatian Consortium, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

    D. Hrupec

  126. Japanese MAGIC Consortium, RIKEN, Wako, Japan

    S. Inoue

  127. Japanese MAGIC Consortium, Tokai University, Hiratsuka, Japan

    J. Kushida & K. Nishijima

  128. Dipartimento di Fisica, Università di Trieste, Trieste, Italy

    F. Longo

  129. Institute for Fundamental Physics of the Universe (IFPU), Trieste, Italy

    F. Longo & L. Nava

  130. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

    M. Makariev, G. Maneva, M. Minev & P. Temnikov

  131. Universitat de Barcelona, ICCUB, IEEC-UB, Barcelona, Spain

    E. Molina, J. M. Paredes, M. Ribó & N. Torres-Albà

  132. Finnish MAGIC Consortium, Astronomy Research Unit, University of Oulu, Oulu, Finland

    V. Neustroev

  133. Croatian Consortium, Rudjer Boskovic Institute, Zagreb, Croatia

    I. Šnidarić, T. Surić & T. Terzić

Authors
  1. P. Veres
  2. P. N. Bhat
  3. M. S. Briggs
  4. W. H. Cleveland
  5. R. Hamburg
  6. C. M. Hui
  7. B. Mailyan
  8. R. D. Preece
  9. O. J. Roberts
  10. A. von Kienlin
  11. C. A. Wilson-Hodge
  12. D. Kocevski
  13. M. Arimoto
  14. D. Tak
  15. K. Asano
  16. M. Axelsson
  17. G. Barbiellini
  18. E. Bissaldi
  19. F. Fana Dirirsa
  20. R. Gill
  21. J. Granot
  22. J. McEnery
  23. N. Omodei
  24. S. Razzaque
  25. F. Piron
  26. J. L. Racusin
  27. D. J. Thompson
  28. S. Campana
  29. M. G. Bernardini
  30. N. P. M. Kuin
  31. M. H. Siegel
  32. S. B. Cenko
  33. P. O’Brien
  34. M. Capalbi
  35. A. Daì
  36. M. De Pasquale
  37. J. Gropp
  38. N. Klingler
  39. J. P. Osborne
  40. M. Perri
  41. R. L. C. Starling
  42. G. Tagliaferri
  43. A. Tohuvavohu
  44. A. Ursi
  45. M. Tavani
  46. M. Cardillo
  47. C. Casentini
  48. G. Piano
  49. Y. Evangelista
  50. F. Verrecchia
  51. C. Pittori
  52. F. Lucarelli
  53. A. Bulgarelli
  54. N. Parmiggiani
  55. G. E. Anderson
  56. J. P. Anderson
  57. G. Bernardi
  58. J. Bolmer
  59. M. D. Caballero-García
  60. I. M. Carrasco
  61. A. Castellón
  62. N. Castro Segura
  63. A. J. Castro-Tirado
  64. S. V. Cherukuri
  65. A. M. Cockeram
  66. P. D’Avanzo
  67. A. Di Dato
  68. R. Diretse
  69. R. P. Fender
  70. E. Fernández-García
  71. J. P. U. Fynbo
  72. A. S. Fruchter
  73. J. Greiner
  74. M. Gromadzki
  75. K. E. Heintz
  76. I. Heywood
  77. A. J. van der Horst
  78. Y.-D. Hu
  79. C. Inserra
  80. L. Izzo
  81. V. Jaiswal
  82. P. Jakobsson
  83. J. Japelj
  84. E. Kankare
  85. D. A. Kann
  86. C. Kouveliotou
  87. S. Klose
  88. A. J. Levan
  89. X. Y. Li
  90. S. Lotti
  91. K. Maguire
  92. D. B. Malesani
  93. I. Manulis
  94. M. Marongiu
  95. S. Martin
  96. A. Melandri
  97. M. J. Michałowski
  98. J. C. A. Miller-Jones
  99. K. Misra
  100. A. Moin
  101. K. P. Mooley
  102. S. Nasri
  103. M. Nicholl
  104. A. Noschese
  105. G. Novara
  106. S. B. Pandey
  107. E. Peretti
  108. C. J. Pérez del Pulgar
  109. M. A. Pérez-Torres
  110. D. A. Perley
  111. L. Piro
  112. F. Ragosta
  113. L. Resmi
  114. R. Ricci
  115. A. Rossi
  116. R. Sánchez-Ramírez
  117. J. Selsing
  118. S. Schulze
  119. S. J. Smartt
  120. I. A. Smith
  121. V. V. Sokolov
  122. J. Stevens
  123. N. R. Tanvir
  124. C. C. Thöne
  125. A. Tiengo
  126. E. Tremou
  127. E. Troja
  128. A. de Ugarte Postigo
  129. A. F. Valeev
  130. S. D. Vergani
  131. M. Wieringa
  132. P. A. Woudt
  133. D. Xu
  134. O. Yaron
  135. D. R. Young

Consortia

MAGIC Collaboration

  • V. A. Acciari
  • , S. Ansoldi
  • , L. A. Antonelli
  • , A. Arbet Engels
  • , D. Baack
  • , A. Babić
  • , B. Banerjee
  • , U. Barres de Almeida
  • , J. A. Barrio
  • , J. Becerra González
  • , W. Bednarek
  • , L. Bellizzi
  • , E. Bernardini
  • , A. Berti
  • , J. Besenrieder
  • , W. Bhattacharyya
  • , C. Bigongiari
  • , A. Biland
  • , O. Blanch
  • , G. Bonnoli
  • , Ž. Bošnjak
  • , G. Busetto
  • , R. Carosi
  • , G. Ceribella
  • , Y. Chai
  • , A. Chilingaryan
  • , S. Cikota
  • , S. M. Colak
  • , U. Colin
  • , E. Colombo
  • , J. L. Contreras
  • , J. Cortina
  • , S. Covino
  • , V. D’Elia
  • , P. Da Vela
  • , F. Dazzi
  • , A. De Angelis
  • , B. De Lotto
  • , M. Delfino
  • , J. Delgado
  • , D. Depaoli
  • , F. Di Pierro
  • , L. Di Venere
  • , E. Do Souto Espiñeira
  • , D. Dominis Prester
  • , A. Donini
  • , D. Dorner
  • , M. Doro
  • , D. Elsaesser
  • , V. Fallah Ramazani
  • , A. Fattorini
  • , G. Ferrara
  • , D. Fidalgo
  • , L. Foffano
  • , M. V. Fonseca
  • , L. Font
  • , C. Fruck
  • , S. Fukami
  • , R. J. García López
  • , M. Garczarczyk
  • , S. Gasparyan
  • , M. Gaug
  • , N. Giglietto
  • , F. Giordano
  • , N. Godinović
  • , D. Green
  • , D. Guberman
  • , D. Hadasch
  • , A. Hahn
  • , J. Herrera
  • , J. Hoang
  • , D. Hrupec
  • , M. Hütten
  • , T. Inada
  • , S. Inoue
  • , K. Ishio
  • , Y. Iwamura
  • , L. Jouvin
  • , D. Kerszberg
  • , H. Kubo
  • , J. Kushida
  • , A. Lamastra
  • , D. Lelas
  • , F. Leone
  • , E. Lindfors
  • , S. Lombardi
  • , F. Longo
  • , M. López
  • , R. López-Coto
  • , A. López-Oramas
  • , S. Loporchio
  • , B. Machado de Oliveira Fraga
  • , C. Maggio
  • , P. Majumdar
  • , M. Makariev
  • , M. Mallamaci
  • , G. Maneva
  • , M. Manganaro
  • , K. Mannheim
  • , L. Maraschi
  • , M. Mariotti
  • , M. Martínez
  • , D. Mazin
  • , S. Mićanović
  • , D. Miceli
  • , M. Minev
  • , J. M. Miranda
  • , R. Mirzoyan
  • , E. Molina
  • , A. Moralejo
  • , D. Morcuende
  • , V. Moreno
  • , E. Moretti
  • , P. Munar-Adrover
  • , V. Neustroev
  • , C. Nigro
  • , K. Nilsson
  • , D. Ninci
  • , K. Nishijima
  • , K. Noda
  • , L. Nogués
  • , S. Nozaki
  • , S. Paiano
  • , M. Palatiello
  • , D. Paneque
  • , R. Paoletti
  • , J. M. Paredes
  • , P. Peñil
  • , M. Peresano
  • , M. Persic
  • , P. G. Prada Moroni
  • , E. Prandini
  • , I. Puljak
  • , W. Rhode
  • , M. Ribó
  • , J. Rico
  • , C. Righi
  • , A. Rugliancich
  • , L. Saha
  • , N. Sahakyan
  • , T. Saito
  • , S. Sakurai
  • , K. Satalecka
  • , K. Schmidt
  • , T. Schweizer
  • , J. Sitarek
  • , I. Šnidarić
  • , D. Sobczynska
  • , A. Somero
  • , A. Stamerra
  • , D. Strom
  • , M. Strzys
  • , Y. Suda
  • , T. Surić
  • , M. Takahashi
  • , F. Tavecchio
  • , P. Temnikov
  • , T. Terzić
  • , M. Teshima
  • , N. Torres-Albà
  • , L. Tosti
  • , V. Vagelli
  • , J. van Scherpenberg
  • , G. Vanzo
  • , M. Vazquez Acosta
  • , C. F. Vigorito
  • , V. Vitale
  • , I. Vovk
  • , M. Will
  • , D. Zarić
  • & L. Nava

Contributions

The MAGIC telescope system was designed and constructed by the MAGIC Collaboration. Operation, data processing, calibration, Monte Carlo simulations of the detector and of theoretical models, and data analyses were performed by the members of the MAGIC Collaboration, who also discussed and approved the scientific results. L. Nava coordinated the collection of the data, developed the theoretical interpretation and wrote the main section and the section on afterglow modelling. E. Moretti coordinated the analysis of the MAGIC data, wrote the relevant sections and, together with F. Longo, coordinated the collaboration with the Fermi team. D. Miceli, Y.S. and S.F. performed the analysis of the MAGIC data. S. Covino provided support with the analysis of the optical data and the writing of the corresponding sections. Z.B. performed calculations for the contribution of prompt emission to the teraelectronvolt radiation and wrote the corresponding section. A. Stamerra, D.P. and S.I. contributed to structuring and editing the paper. A. Berti contributed to editing and finalizing the manuscript. R.M. coordinated and supervised the writing of the paper. All MAGIC collaborators contributed to the editing of and provided comments on the final version of the manuscript. S. Campana and M.G.B. extracted the spectra and performed the spectral analysis of the Swift-BAT and Swift-XRT data. N.P.M.K. derived the photometry for the Swift-UVOT event mode data and the UV grism exposure. M.H.S. derived the image-mode Swift-UVOT photometry. A.d.U.P. was principal investigator of ALMA programme 2018.1A.00020.T, triggered these observations and performed photometry. S. Martin reduced the ALMA Band 6 data. C.C.T., S. Schulze, D.A.K. and M. Michałowski participated in the ALMA DDT proposal preparation, observations and scientific analysis of the data. D.A.P. was principal investigator of ALMA programme 2018年1月01日410.T and triggered these observations and was principal investigator of the LT and JCMT programmes. A.M.C. analysed the ALMA Band 3 and LT data and wrote the LT text. S. Schulze contributed to the development of the ALMA Band 3 observing programme. I.A.S. triggered the JCMT programme, analysed the data and wrote the associated text. N.R.T. contributed to the development of the JCMT programme. D.A.K. and C.C.T. triggered and coordinated the X-shooter observations. D.A.K. independently checked the optical light curve analysis. K. Misra was the principal investigator of the GMRT programme 35_018. S.V.C. and V.J. analysed the data. L.R. contributed to the observation plan and data analysis. E. Tremou, I.H. and R.D. performed the MeerKAT data analysis. G.E.A., A. Moin, S. Schulze and E. Troja were principal investigators of ATCA programme CX424. G.E.A., M. Wieringa and J. Stevens carried out the observations. G.E.A., G. Bernardi, S.K., M. Marongiu, A. Moin, R.R. and M. Wieringa analysed these data. J.C.A.M.-J. and L.P. participated in the ATCA proposal preparation and the scientific analysis of the data. The ePESSTO project was delivered by the following, who contributed to managing, executing, reducing, analysing ESO/NTT data and provided comments to the manuscript: J.P.A., N.C.S., P.D’A., M. Gromadzki, C.I., E.K., K. Maguire, M.N., F.R. and S.J.S.; A. Melandri and A. Rossi reduced and analysed REM data and provided comments to the manuscript. J. Bolmer was responsible for observing the GRB with GROND and for the data reduction and calibration. J. Bolmer and J. Greiner contributed to the analysis of the data and writing of the text. E. Troja triggered the NuSTAR TOO observations performed under the DDT programme, L.P. requested the XMM-Newton data, obtained under a DDT programme, and carried out the scientific analysis of the XMM-Newton and NuSTAR data. S. Lotti analysed the NuSTAR data and wrote the associated text. A. Tiengo and G. Novara analysed the XMM-Newton data and wrote the associated text. A.J.C.-T. led the observing BOOTES and GTC programmes. A. Castellón, C.J.P.d.P., E.F.-G., I.M.C., S.B.P. and X.Y.L. analysed the BOOTES data, and A.F.V., M.D.C.-G., R.S.-R., Y.-D.H. and V.V.S. analysed the GTC data and interpreted them accordingly. N.R.T. created the X-shooter and AlFOSC figures. J.P.U.F. and J.J. performed the analysis of the X-shooter and AlFOSC spectra. D.X. and P.J. contributed to the NOT programme and triggering. D. Malesani performed photometric analysis of NOT data. E. Peretti contributed to the development of the code for modelling afterglow radiation. L.I. triggered and analysed the OASDG data, and A.D.D. and A.N. performed the observations at the telescope.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature thanks Xiang-Yu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Prompt-emission light curves for different detectors.

af, Light curves for Super-AGILE (a; 20–60 keV), Swift-BAT (b; 15–150 keV), Fermi-GBM (c; 10–1,000 keV), AGILE-MCAL (d; 0.4–1.4 MeV), AGILE-MCAL (e; 1.4–100 MeV) and Fermi-LAT (f; 0.1–10 GeV). The light curve of AGILE-MCAL is split into two bands to show the energy dependence of the first peak. Error bars show 1σ statistical errors.

Extended Data Fig. 2 MAGIC time-integrated SEDs in the time interval 62–2,400 s after T0.

The green (yellow, blue) points and band show the results of the Monte Carlo (MC) simulations for the nominal and the varied light scale cases (+15%, −15%), which define the limits of the systematic uncertainties. The contour regions are drawn from the 1σ error of their best-fit power-law functions. The vertical bars of the data points show the 1σ errors on the flux.

Extended Data Fig. 3 Afterglow light curves of GRB 190114C.

Flux density at different frequencies as a function of the time since the initial burst, TT0. a, Observation in the NIR, optical and UV bands. The flux has been corrected for extinction in the host and in our Galaxy. The contribution of the host galaxy and its companion has been subtracted. Fluxes have been rescaled (except for the r-band filter). b, Radio and submillimetre observations from 1.3 GHz to 670 GHz. ‘Instr.’, instrument.

Extended Data Fig. 4 Images of the localization region of GRB 190114C.

a, All-sky image captured with the CASANDRA-1 camera at the BOOTES-1 station. The image (30 s exposure, unfiltered) was taken at T0 + 14.8 s, and was severely affected by the moon. At the GRB190114C location (red dot) no prompt optical emission is detected. Inset, magnification (inverted colours) containing a 10′-diametercircle centred on the optical position. b, Three-colour image of the host of GRB 190114C, obtained with the HST. The host galaxy is a spiral galaxy, and the green circle indicates the location of the transient close to its host nucleus. The image is 8′′ across; north is up and east is to the left. ce, Images of the GRB 190114C field taken with the HST, obtained with the F850LP filter (covering roughly the region from 800 to 1,100 nm). Two epochs, 11 February and 12 March 2019, are shown (images are 4′′ across); the right-most image is the result of the difference image. A faint transient is visible close to the nucleus of the galaxy, and we identify this as the late-time afterglow of the burst.

Extended Data Fig. 5 Optical–NIR spectra of GRB 190114C.

a, NOT/AlFOSC spectrum obtained at mid-time (i.e., the epoch corresponding to a half of the exposure length) 1 h post-burst. The continuum is afterglow-dominated at this time, and shows strong absorption features of Ca ii and Na i (in addition to telluric absorption). b, Normalized GTC (+OSIRIS) spectrum obtained on 14 January 2019, 23:32:03 ut with the R1000B and R2500I grisms. The emission lines of the underlying host galaxy are noticeable, besides the Ca ii absorption lines in the afterglow spectrum. c, Visible-light region of the VLT–X-shooter spectrum obtained approximately 3.2 d post-burst, showing strong emission lines from the star-forming host galaxy.

Extended Data Fig. 6 SEDs from radio frequencies to X-rays at different epochs.

The synchrotron frequency νm crosses the optical band, moving from higher to lower frequencies. The break between 108 and 1010 Hz is caused by the self-absorption synchrotron frequency, νsa. Optical (X-ray) data have been corrected for extinction (absorption). The data points are taken from the following telescopes (from lower to higher frequencies): filled and empty triangle symbols, GMRT and MeerKAT; stars, ATCA; violet filled circle, ALMA, down arrows, JCMT 1σ upper limits; filled circles, LT (yellow) and GROND (all the other colours). Error bars for all data points define the 1σ error. Coloured stripes show the best fit of the XRT data extrapolated to the time of each SED. Their vertical width is obtained from the error (90% confidence level) on the best-fit normalization. Solid lines show the model SEDs for the case s = 2.

Extended Data Fig. 7 Modelling of broadband light curves.

Modelling results of forward shock emission are compared to observations at different frequencies (see key). The model shown with solid and dashed lines is optimized to describe the high-energy radiation (teraelectronvolt, gigaelectronvolt and X-ray) and has been obtained with the following parameters: s = 0, εe = 0.07, εB = 8 ×ばつ 10−5, p = 2.6, n0 = 0.5 and Ek = 8 ×ばつ 1053 erg. Solid lines show the total flux (synchrotron and SSC) and the dashed line refers to the SSC contribution only. Dotted curves correspond to a better modelling of observations at lower frequencies, but fail to explain the behaviour of the teraelectronvolt light curve; they are obtained with the following model parameters: s = 2, εe = 0.6, εB = 10−4, p = 2.4, A. = 0.1 and Ek = 4 ×ばつ 1053 erg. Vertical bars on the data points show the 1σ errors on the flux, and horizontal bars represent the duration of the observation.

Extended Data Table 1 MAGIC spectral-fit parameters for GRB 190114C
Extended Data Table 2 GROND photometry
Extended Data Table 3 LT, NOT and UVOT observations
Extended Data Table 4 Observations of the host galaxy
Extended Data Table 5 Observations of GRB 190114C by ATCA and JCMT SCUBA-2

About this article

Cite this article

MAGIC Collaboration., Veres, P., Bhat, P.N. et al. Observation of inverse Compton emission from a long γ-ray burst. Nature 575, 459–463 (2019). https://doi.org/10.1038/s41586-019-1754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-019-1754-6

This article is cited by

Search

Advanced search

Quick links

[画像:Nature Briefing]

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing

AltStyle によって変換されたページ (->オリジナル) /