Close
Close window
cos - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

sin, cos, ...

The Trigonometric functions

sinh, cosh, ...

The Hyperbolic functions

Calling Sequence

sin(x) cos(x) tan(x)

sec(x) csc(x) cot(x)

sinh(x) cosh(x) tanh(x)

sech(x) csch(x) coth(x)

Parameters

x

-

expression

Description

Arguments for all trigonometric functions

cosecant

cosine

cotangent

secant

sine

tangent

and hyperbolic functions

csch

cosh

coth

sech

sinh

tanh

must be given in radians. (1 radian = 180/Pi degrees).

For trigonometric functions that accept arguments in degrees, see trigd .

Maple also provides simplification and expansion procedures that apply most of the common trigonometric and hyperbolic identities. Also available are conversion routines that will convert trigonometric expressions to other forms. Three examples are that (1) any trigonometric expression can be converted to an expression in terms of only sin and cos, (2) expressions involving exp(x) can be converted to their hyperbolic forms, and (3) a trigonometric function with an argument of the form qπ, where q is a rational, can in some cases be converted to radical form. For more help, see convert .

For information about expanding and simplifying trigonometric expressions, see expand , factor , combine/trig , and simplify/trig .

Examples

Evaluating trigonometric expressions.

>

sin0

0

(1)
>

cosπ3

12

(2)
>

secπ3

2

(3)
>

coth3.1+2.5I

1.001144421+0.003896610899I

(4)
>

sin760π

sin7π60

(5)
>

rconvert,radical

r38+185525+1316+25+116

(6)
>

evalfr

0.3583679496

(7)

Expanding and simplifying trigonometric functions.

>

simplifysinx2+cosx2,trig

1

(8)
>

expandsinx+y

sinxcosy+cosxsiny

(9)
>

combine,trig

sinx+y

(10)
>

expandsin2x

2sinxcosx

(11)

Other operations involving trigonometric functions.

>

converttanhx,exp

ⅇxⅇxⅇx+ⅇx

(12)
>

Dtan

tan2+1

(13)
>

intsecx,x

lnsecx+tanx

(14)
>

solvecscx=1,x

π2

(15)
>

disconttanx+π2,x

π_Z1~

(16)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /