gfun
algeqtodiffeq
compute a differential equation satisfied by an algebraic function
Calling Sequence
Parameters
Description
Examples
algeqtodiffeq(p, y(z), ini)
p
-
polynomial in y and z (or a polynomial equation)
y
name; holonomic function name
z
name; variable of the holonomic function y
ini
(optional) set; specify computation of initial conditions for the resulting differential equation
The algeqtodiffeq(p, y(z)) command computes a linear differential equation with polynomial coefficients verified by the function y(z). The polynomial p defines an algebraic function, RootOf⁡p,y in Maple terms. The resulting equation is of order at most degree⁡p,y−1.
The resulting linear differential equation contains initial conditions in zero (y⁡0, D⁡y⁡0, and so on), and can thus be passed directly to dsolve . In general, y⁡0 is a RootOf a polynomial, D⁡y⁡0 a rational expression in y⁡0, D2⁡y⁡0 a rational expression in y⁡0, D⁡y⁡0, and so on.
If initial conditions are specified using ini, the algeqtodiffeq function attempts to compute initial conditions for the resulting differential equation.
If a particular solution of eq is selected by specifying initial terms of its power series expansion at the origin using the same syntax as that of initial conditions for dsolve , the algeqtodiffeq function returns the corresponding initial conditions together with the differential equation.
with⁡gfun:
algeqtodiffeq⁡y=1+z⁢y2,y⁡z
1+−1+2⁢z⁢y⁡z+4⁢z2−z⁢ⅆⅆzy⁡z
algeqtodiffeq⁡56⁢a3+7⁢a3⁢y3−14⁢y⁢z,y⁡z,y⁡0=−2
−y⁡z⁢z+3⁢ⅆⅆzy⁡z⁢z2+−108⁢a9+2⁢z3⁢ⅆ2ⅆz2y⁡z,y⁡0=−2,D⁡y⁡0=−13⁢a3
We can use algeqtodiffeq with diffeqtorec to determine fast Taylor expansions.
p≔y=1+z⁢y+z⁢y5
p≔y=z⁢y5+z⁢y+1
deq≔algeqtodiffeq⁡p,y⁡z
deq≔−147840⁢z3+169920⁢z2−22320⁢z+240⁢y⁡z+393216⁢z8−294912⁢z7−466944⁢z6+92160⁢z5+447360⁢z4+65664⁢z3−265488⁢z2+29064⁢z−120⁢ⅆⅆzy⁡z+589824⁢z9−1130496⁢z8−30720⁢z7+878592⁢z6−132480⁢z5−444384⁢z4+203256⁢z3+67800⁢z2−1392⁢z⁢ⅆ2ⅆz2y⁡z+196608⁢z10−606208⁢z9+489472⁢z8+165888⁢z7+83200⁢z6+626112⁢z5+271848⁢z4+24488⁢z3−1408⁢z2⁢ⅆ3ⅆz3y⁡z+16384⁢z11−69632⁢z10+105472⁢z9−56064⁢z8+188480⁢z7+166896⁢z6+38012⁢z5+1333⁢z4−256⁢z3⁢ⅆ4ⅆz4y⁡z,y⁡0=1
rec≔diffeqtorec⁡deq,y⁡z,u⁡n
rec≔16384⁢n4+98304⁢n3+180224⁢n2+98304⁢n⁢u⁡n+−69632⁢n4−466944⁢n3−1060864⁢n2−958464⁢n−294912⁢u⁡n+1+105472⁢n4+700416⁢n3+1332224⁢n2+208896⁢n−995328⁢u⁡n+2+−56064⁢n4−170496⁢n3+1257216⁢n2+5973504⁢n+6543360⁢u⁡n+3+188480⁢n4+1968000⁢n3+7213120⁢n2+11107200⁢n+6572160⁢u⁡n+4+166896⁢n4+2962656⁢n3+18918576⁢n2+51195456⁢n+49204800⁢u⁡n+5+38012⁢n4+956064⁢n3+8804404⁢n2+35087184⁢n+50788512⁢u⁡n+6+1333⁢n4+53814⁢n3+747191⁢n2+4381134⁢n+9313488⁢u⁡n+7+−256⁢n4−8064⁢n3−95216⁢n2−499464⁢n−982080⁢u⁡n+8,u⁡0=1,u⁡1=2,u⁡2=12,u⁡3=112,u⁡4=1232,u⁡5=14832,u⁡6=189184,u⁡7=2512064
p_generator:=rectoproc(rec,u(n),list):
p_generator⁡30
1,2,12,112,1232,14832,189184,2512064,34358784,480745984,6848734464,99003237376,1448575666176,21411827808256,319255531155456,4796005997940736,72520546008219648,1102912584949792768,16859182461720526848,258886644574700699648,3991711460817459806208,61775021926688418365440,959229931916911121530880,14940323391360408046796800,233352506098550016631111680,3654109325605190169830359040,57356169042767373344673103872,902258550678887785413876908032,14222150544386213214581667397632,224605955315162319622246867402752,3553395680818726488887774467325952
See Also
dsolve
gfun/parameters
gfun[diffeqtorec]
gfun[rectoproc]
RootOf
Download Help Document
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル